BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 24663955)

  • 21. Microfluidic analysis of cellular deformability of normal and oxidatively damaged red blood cells.
    Kwan JM; Guo Q; Kyluik-Price DL; Ma H; Scott MD
    Am J Hematol; 2013 Aug; 88(8):682-9. PubMed ID: 23674388
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microfluidic assemblies designed for assessment of drug effects on deformability of human erythrocytes.
    Xing F; Xun S; Zhu Y; Hu F; Drevenšek-Olenik I; Zhang X; Pan L; Xu J
    Biochem Biophys Res Commun; 2019 Apr; 512(2):303-309. PubMed ID: 30890334
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The deformability of red blood cells parasitized by Plasmodium falciparum and P. vivax.
    Suwanarusk R; Cooke BM; Dondorp AM; Silamut K; Sattabongkot J; White NJ; Udomsangpetch R
    J Infect Dis; 2004 Jan; 189(2):190-4. PubMed ID: 14722882
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Geometrical focusing of cells in a microfluidic device: an approach to separate blood plasma.
    Faivre M; Abkarian M; Bickraj K; Stone HA
    Biorheology; 2006; 43(2):147-59. PubMed ID: 16687784
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microcirculatory pathways and blood flow in spleen: new insights from washout kinetics, corrosion casts, and quantitative intravital videomicroscopy.
    Groom AC; Schmidt EE; MacDonald IC
    Scanning Microsc; 1991 Mar; 5(1):159-73; discussion 173-4. PubMed ID: 2052921
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative aspects of splenic microcirculatory pathways in mammals: the region bordering the white pulp.
    Schmidt EE; MacDonald IC; Groom AC
    Scanning Microsc; 1993 Jun; 7(2):613-28. PubMed ID: 8108677
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Migration velocity of red blood cells in microchannels.
    Losserand S; Coupier G; Podgorski T
    Microvasc Res; 2019 Jul; 124():30-36. PubMed ID: 30831125
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deformability based cell margination--a simple microfluidic design for malaria-infected erythrocyte separation.
    Hou HW; Bhagat AA; Chong AG; Mao P; Tan KS; Han J; Lim CT
    Lab Chip; 2010 Oct; 10(19):2605-13. PubMed ID: 20689864
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Elimination of old or worn red blood cells in the senile murine spleen.
    Shimizu K; Hokano M
    Acta Histochem; 1988; 83(1):65-70. PubMed ID: 3132019
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Extensional flow-based assessment of red blood cell deformability using hyperbolic converging microchannel.
    Lee SS; Yim Y; Ahn KH; Lee SJ
    Biomed Microdevices; 2009 Oct; 11(5):1021-7. PubMed ID: 19434498
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A compartmental analysis of the splenic circulation in rat.
    Stock RJ; Cilento EV; Reilly FD; McCuskey RS
    Am J Physiol; 1983 Jul; 245(1):H17-21. PubMed ID: 6869558
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Erythrocyte invasion by malaria (Plasmodium falciparum) merozoites: recent advances in the evaluation of receptor sites.
    Hermentin P; Enders B
    Behring Inst Mitt; 1984 Nov; (76):121-41. PubMed ID: 6395849
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Assessment of hemorheological deformability of human red cells exposed to tert-butyl hydroperoxide, verapamil and ascorbate by ektacytometer].
    Kim DH; Kim YK; Won DI; Shin S; Suh JS
    Korean J Lab Med; 2008 Oct; 28(5):325-31. PubMed ID: 18971612
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An exported kinase (FIKK4.2) that mediates virulence-associated changes in Plasmodium falciparum-infected red blood cells.
    Kats LM; Fernandez KM; Glenister FK; Herrmann S; Buckingham DW; Siddiqui G; Sharma L; Bamert R; Lucet I; Guillotte M; Mercereau-Puijalon O; Cooke BM
    Int J Parasitol; 2014 Apr; 44(5):319-28. PubMed ID: 24530877
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Relationship of alterations in splenic clearance function and microcirculation to host defense in acute rodent malaria.
    Wyler DJ; Quinn TC; Chen LT
    J Clin Invest; 1981 May; 67(5):1400-4. PubMed ID: 7014635
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamic alteration in splenic function during acute falciparum malaria.
    Looareesuwan S; Ho M; Wattanagoon Y; White NJ; Warrell DA; Bunnag D; Harinasuta T; Wyler DJ
    N Engl J Med; 1987 Sep; 317(11):675-9. PubMed ID: 3306376
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microfluidics analysis of red blood cell membrane viscoelasticity.
    Tomaiuolo G; Barra M; Preziosi V; Cassinese A; Rotoli B; Guido S
    Lab Chip; 2011 Feb; 11(3):449-54. PubMed ID: 21076756
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The accumulation of macrophages expressing myeloid-related protein 8 (MRP8) and MRP14 in the spleen of BALB/cA mice during infection with Plasmodium berghei.
    Mizobuchi H; Yamakoshi S; Omachi S; Osada Y; Sanjoba C; Goto Y; Matsumoto Y
    Exp Parasitol; 2014 Mar; 138():1-8. PubMed ID: 24440297
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomechanics of red blood cells in human spleen and consequences for physiology and disease.
    Pivkin IV; Peng Z; Karniadakis GE; Buffet PA; Dao M; Suresh S
    Proc Natl Acad Sci U S A; 2016 Jul; 113(28):7804-9. PubMed ID: 27354532
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrical measurement of red blood cell deformability on a microfluidic device.
    Zheng Y; Nguyen J; Wang C; Sun Y
    Lab Chip; 2013 Aug; 13(16):3275-83. PubMed ID: 23798004
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.