These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 24663991)

  • 1. Flat super-oscillatory lens for heat-assisted magnetic recording with sub-50 nm resolution.
    Yuan G; Rogers ET; Roy T; Shen Z; Zheludev NI
    Opt Express; 2014 Mar; 22(6):6428-37. PubMed ID: 24663991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel aluminum near field transducer and highly integrated micro-nano-optics design for heat-assisted ultra-high-density magnetic recording.
    Miao L; Stoddart PR; Hsiang TY
    Nanotechnology; 2014 Jul; 25(29):295202. PubMed ID: 24981413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subdiffraction light focusing using a cross sectional ridge waveguide nanoscale aperture.
    Traverso L; Datta A; Xu X
    Opt Express; 2016 Nov; 24(23):26016-26023. PubMed ID: 27857340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Grazing-incidence optical magnetic recording with super-resolution.
    Scheunert G; Cohen SR; Kullock R; McCarron R; Rechev K; Kaplan-Ashiri I; Bitton O; Dawson P; Hecht B; Oron D
    Beilstein J Nanotechnol; 2017; 8():28-37. PubMed ID: 28144562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Power delivery and self-heating in nanoscale near field transducer for heat-assisted magnetic recording.
    Zhou N; Traverso LM; Xu X
    Nanotechnology; 2015 Mar; 26(13):134001. PubMed ID: 25759907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective heat dissipation in an adiabatic near-field transducer for HAMR.
    Zhong C; Flanigan P; Abadía N; Bello F; Jennings BD; Atcheson G; Li J; Zheng JY; Wang JJ; Hobbs R; McCloskey D; Donegan JF
    Opt Express; 2018 Jul; 26(15):18842-18854. PubMed ID: 30114145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High field enhancement between transducer and resonant antenna for application in bit patterned heat-assisted magnetic recording.
    Gosciniak J; Rasras M
    Opt Express; 2019 Mar; 27(6):8605-8611. PubMed ID: 31052675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths.
    Yuan G; Rogers ET; Roy T; Adamo G; Shen Z; Zheludev NI
    Sci Rep; 2014 Sep; 4():6333. PubMed ID: 25208611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical and thermal analysis of the light-heat conversion process employing an antenna-based hybrid plasmonic waveguide for HAMR.
    Abadía N; Bello F; Zhong C; Flanigan P; McCloskey DM; Wolf C; Krichevsky A; Wolf D; Zong F; Samani A; Plant DV; Donegan JF
    Opt Express; 2018 Jan; 26(2):1752-1765. PubMed ID: 29402045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of C-apertures in a successful demonstration of heat-assisted magnetic recording.
    Hussain S; Bhatia CS; Yang H; Danner AJ
    Opt Lett; 2015 Aug; 40(15):3444-7. PubMed ID: 26258328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical investigation of a light delivery device using metal/insulator/metal with a 3D linear taper waveguide and an input grating for heat-assisted magnetic recording.
    Wongpanya K; Pijitrojana W
    Appl Opt; 2021 Dec; 60(36):11001-11009. PubMed ID: 35201087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermo-magnetic recording on a Co/Pt perpendicular film by a sharp metallic probe.
    Zhang L; Zu XT; Peng JG; Yan Z; Zhong ZY
    Nanotechnology; 2008 Feb; 19(8):085714. PubMed ID: 21730745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and testing of low intensity laser biostimulator.
    Valchinov ES; Pallikarakis NE
    Biomed Eng Online; 2005 Jan; 4():5. PubMed ID: 15649327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanostructure, structural stability, and diffusion characteristics of layered coatings for heat-assisted magnetic recording head media.
    Matlak J; Rismaniyazdi E; Komvopoulos K
    Sci Rep; 2018 Jun; 8(1):9807. PubMed ID: 29955072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale ridge aperture as near-field transducer for heat-assisted magnetic recording.
    Zhou N; Kinzel EC; Xu X
    Appl Opt; 2011 Nov; 50(31):G42-6. PubMed ID: 22086046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Far-field sub-diffraction focusing lens based on binary amplitude-phase mask for linearly polarized light.
    Chen G; Zhang K; Yu A; Wang X; Zhang Z; Li Y; Wen Z; Li C; Dai L; Jiang S; Lin F
    Opt Express; 2016 May; 24(10):11002-8. PubMed ID: 27409922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the role of carbon microstructure on the thermal stability and performance of ultrathin (<2 nm) overcoats on L10 FePt media for heat-assisted magnetic recording.
    Kundu S; Dwivedi N; Satyanarayana N; Yeo RJ; Ahner J; Jones PM; Bhatia CS
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):158-65. PubMed ID: 25485473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visible achromatic super-oscillatory metasurfaces for sub-diffraction focusing.
    Tang D; Chen L; Liu J
    Opt Express; 2019 Apr; 27(9):12308-12316. PubMed ID: 31052773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micromagnetic Simulation of
    Jongjaihan C; Kaewrawang A
    Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Super-oscillatory metasurface doublet for sub-diffraction focusing with a large incident angle.
    Li Z; Wang C; Wang Y; Lu X; Guo Y; Li X; Ma X; Pu M; Luo X
    Opt Express; 2021 Mar; 29(7):9991-9999. PubMed ID: 33820160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.