These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 24664069)

  • 1. Frequency stabilization of a 369 nm diode laser by nonlinear spectroscopy of Ytterbium ions in a discharge.
    Lee MW; Jarratt MC; Marciniak C; Biercuk MJ
    Opt Express; 2014 Mar; 22(6):7210-21. PubMed ID: 24664069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser stabilization to neutral Yb in a discharge with polarization-enhanced frequency modulation spectroscopy.
    Blūms V; Scarabel J; Shimizu K; Ghadimi M; Connell SC; Händel S; Norton BG; Bridge EM; Kielpinski D; Lobino M; Streed EW
    Rev Sci Instrum; 2020 Dec; 91(12):123002. PubMed ID: 33379967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high-power 626 nm diode laser system for Beryllium ion trapping.
    Ball H; Lee MW; Gensemer SD; Biercuk MJ
    Rev Sci Instrum; 2013 Jun; 84(6):063107. PubMed ID: 23822333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency stabilization of an external-cavity diode laser to metastable argon atoms in a discharge.
    Douglas P; Maher-McWilliams C; Barker PF
    Rev Sci Instrum; 2012 Jun; 83(6):063107. PubMed ID: 22755615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extended temperature tuning of an ultraviolet diode laser for trapping and cooling single Yb+ ions.
    Nguyen AT; Wang LB; Schauer MM; Torgerson JR
    Rev Sci Instrum; 2010 May; 81(5):053110. PubMed ID: 20515127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Injection locking of a high power ultraviolet laser diode for laser cooling of ytterbium atoms.
    Hosoya T; Miranda M; Inoue R; Kozuma M
    Rev Sci Instrum; 2015 Jul; 86(7):073110. PubMed ID: 26233359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Passive intrinsic-linewidth narrowing of ultraviolet extended-cavity diode laser by weak optical feedback.
    Samutpraphoot P; Weber S; Lin Q; Gangloff D; Bylinskii A; Braverman B; Kawasaki A; Raab C; Kaenders W; Vuletić V
    Opt Express; 2014 May; 22(10):11592-9. PubMed ID: 24921280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diode-laser frequency stabilization by two-frequency Doppler-broadened absorption spectroscopy.
    Peng JL; Ahn H
    Appl Opt; 2004 Nov; 43(31):5860-3. PubMed ID: 15540444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sub-kilohertz laser linewidth narrowing using polarization spectroscopy.
    Torrance JS; Sparkes BM; Turner LD; Scholten RE
    Opt Express; 2016 May; 24(11):11396-406. PubMed ID: 27410068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Doppler-free spectroscopy of mercury at 253.7 nm using a high-power, frequency-quadrupled, optically pumped external-cavity semiconductor laser.
    Paul J; Kaneda Y; Wang TL; Lytle C; Moloney JV; Jones RJ
    Opt Lett; 2011 Jan; 36(1):61-3. PubMed ID: 21209687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupled optical resonance laser locking.
    Burd SC; du Toit PJ; Uys H
    Opt Express; 2014 Oct; 22(21):25043-52. PubMed ID: 25401537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absolute frequency stabilization of an extended-cavity diode laser by means of noise-immune cavity-enhanced optical heterodyne molecular spectroscopy.
    Dinesan H; Fasci E; Castrillo A; Gianfrani L
    Opt Lett; 2014 Apr; 39(7):2198-201. PubMed ID: 24686710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear polarization spectroscopy of a Rydberg state for laser stabilization.
    Meyer DH; Kunz PD; Solmeyer N
    Appl Opt; 2017 Jan; 56(3):B92-B96. PubMed ID: 28157870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency stabilization of multiple lasers to a reference atomic transition of Rb.
    Utreja S; Rathore H; Das M; Panja S
    Sci Rep; 2022 Nov; 12(1):20624. PubMed ID: 36450900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acousto-optic modulator based frequency stabilized diode laser system for atom trapping.
    McDowall PD; Andersen MF
    Rev Sci Instrum; 2009 May; 80(5):053101. PubMed ID: 19485486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser cooling of beryllium ions using a frequency-doubled 626 nm diode laser.
    Cozijn FM; Biesheuvel J; Flores AS; Ubachs W; Blume G; Wicht A; Paschke K; Erbert G; Koelemeij JC
    Opt Lett; 2013 Jul; 38(13):2370-2. PubMed ID: 23811931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A long-term frequency stabilized deep ultraviolet laser for Mg+ ions trapping experiments.
    Zhang J; Yuan WH; Deng K; Deng A; Xu ZT; Qin CB; Lu ZH; Luo J
    Rev Sci Instrum; 2013 Dec; 84(12):123109. PubMed ID: 24387422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency-comb-referenced tunable diode laser spectroscopy and laser stabilization applied to laser cooling.
    Fordell T; Wallin AE; Lindvall T; Vainio M; Merimaa M
    Appl Opt; 2014 Nov; 53(31):7476-82. PubMed ID: 25402914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust frequency stabilization and linewidth narrowing of a laser with large intermittent frequency jumps using an optical cavity and an atomic beam.
    Lee WK; Yong Park C; Heo MS; Yu DH; Kim H
    Appl Opt; 2020 Oct; 59(28):8918-8924. PubMed ID: 33104578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A compact ultranarrow high-power laser system for experiments with 578 nm ytterbium clock transition.
    Cappellini G; Lombardi P; Mancini M; Pagano G; Pizzocaro M; Fallani L; Catani J
    Rev Sci Instrum; 2015 Jul; 86(7):073111. PubMed ID: 26233360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.