These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 24664516)

  • 1. Development of a phenotypic assay for characterisation of ethanologenic yeast strain sensitivity to inhibitors released from lignocellulosic feedstocks.
    Greetham D; Wimalasena T; Kerruish DW; Brindley S; Ibbett RN; Linforth RL; Tucker G; Phister TG; Smart KA
    J Ind Microbiol Biotechnol; 2014 Jun; 41(6):931-45. PubMed ID: 24664516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioprospecting thermotolerant ethanologenic yeasts for simultaneous saccharification and fermentation from diverse environments.
    Choudhary J; Singh S; Nain L
    J Biosci Bioeng; 2017 Mar; 123(3):342-346. PubMed ID: 27856231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic improvement of native xylose-fermenting yeasts for ethanol production.
    Harner NK; Wen X; Bajwa PK; Austin GD; Ho CY; Habash MB; Trevors JT; Lee H
    J Ind Microbiol Biotechnol; 2015 Jan; 42(1):1-20. PubMed ID: 25404205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Xylose consumption and ethanol production by Pichia guilliermondii and Candida oleophila in the presence of furans, phenolic compounds, and organic acids commonly produced during the pre-treatment of plant biomass.
    da Silva RR; Zaiter MA; Boscolo M; da Silva R; Gomes E
    Braz J Microbiol; 2023 Jun; 54(2):753-759. PubMed ID: 36826705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A wild and tolerant yeast suitable for ethanol fermentation from lignocellulose.
    Kodama S; Nakanishi H; Thalagala TA; Isono N; Hisamatsu M
    J Biosci Bioeng; 2013 May; 115(5):557-61. PubMed ID: 23273910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethanolic fermentation of pentoses in lignocellulose hydrolysates.
    Hahn-Hägerdal B; Lindén T; Senac T; Skoog K
    Appl Biochem Biotechnol; 1991; 28-29():131-44. PubMed ID: 1929360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exceptional hexose-fermenting ability of the xylitol-producing yeast Candida guilliermondii FTI 20037.
    Wen X; Sidhu S; Horemans SKC; Sooksawat N; Harner NK; Bajwa PK; Yuan Z; Lee H
    J Biosci Bioeng; 2016 Jun; 121(6):631-637. PubMed ID: 26596373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Random UV-C mutagenesis of Scheffersomyces (formerly Pichia) stipitis NRRL Y-7124 to improve anaerobic growth on lignocellulosic sugars.
    Hughes SR; Gibbons WR; Bang SS; Pinkelman R; Bischoff KM; Slininger PJ; Qureshi N; Kurtzman CP; Liu S; Saha BC; Jackson JS; Cotta MA; Rich JO; Javers JE
    J Ind Microbiol Biotechnol; 2012 Jan; 39(1):163-73. PubMed ID: 21748309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative global metabolite profiling of xylose-fermenting Saccharomyces cerevisiae SR8 and Scheffersomyces stipitis.
    Shin M; Kim JW; Ye S; Kim S; Jeong D; Lee DY; Kim JN; Jin YS; Kim KH; Kim SR
    Appl Microbiol Biotechnol; 2019 Jul; 103(13):5435-5446. PubMed ID: 31001747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tolerance of pentose utilising yeast to hydrogen peroxide-induced oxidative stress.
    Spencer J; Phister TG; Smart KA; Greetham D
    BMC Res Notes; 2014 Mar; 7():151. PubMed ID: 24636079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repeated-batch fermentation of lignocellulosic hydrolysate to ethanol using a hybrid Saccharomyces cerevisiae strain metabolically engineered for tolerance to acetic and formic acids.
    Sanda T; Hasunuma T; Matsuda F; Kondo A
    Bioresour Technol; 2011 Sep; 102(17):7917-24. PubMed ID: 21704512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variable and dose-dependent response of Saccharomyces and non-Saccharomyces yeasts toward lignocellulosic hydrolysate inhibitors.
    Soares CEVF; Bergmann JC; de Almeida JRM
    Braz J Microbiol; 2021 Jun; 52(2):575-586. PubMed ID: 33825150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GRE2 from Scheffersomyces stipitis as an aldehyde reductase contributes tolerance to aldehyde inhibitors derived from lignocellulosic biomass.
    Wang X; Ma M; Liu ZL; Xiang Q; Li X; Liu N; Zhang X
    Appl Microbiol Biotechnol; 2016 Aug; 100(15):6671-6682. PubMed ID: 27003269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review.
    Parawira W; Tekere M
    Crit Rev Biotechnol; 2011 Mar; 31(1):20-31. PubMed ID: 20513164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds.
    Keating JD; Panganiban C; Mansfield SD
    Biotechnol Bioeng; 2006 Apr; 93(6):1196-206. PubMed ID: 16470880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved ethanol productivity and ethanol tolerance through genome shuffling of Saccharomyces cerevisiae and Pichia stipitis.
    Jetti KD; Gns RR; Garlapati D; Nammi SK
    Int Microbiol; 2019 Jun; 22(2):247-254. PubMed ID: 30810988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae.
    Hasunuma T; Sanda T; Yamada R; Yoshimura K; Ishii J; Kondo A
    Microb Cell Fact; 2011 Jan; 10(1):2. PubMed ID: 21219616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screening of Non- Saccharomyces cerevisiae Strains for Tolerance to Formic Acid in Bioethanol Fermentation.
    Oshoma CE; Greetham D; Louis EJ; Smart KA; Phister TG; Powell C; Du C
    PLoS One; 2015; 10(8):e0135626. PubMed ID: 26284784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xylose transport in yeast for lignocellulosic ethanol production: Current status.
    Sharma NK; Behera S; Arora R; Kumar S; Sani RK
    J Biosci Bioeng; 2018 Mar; 125(3):259-267. PubMed ID: 29196106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological comparisons among Spathaspora passalidarum, Spathaspora arborariae, and Scheffersomyces stipitis reveal the bottlenecks for their use in the production of second-generation ethanol.
    Campos VJ; Ribeiro LE; Albuini FM; de Castro AG; Fontes PP; da Silveira WB; Rosa CA; Fietto LG
    Braz J Microbiol; 2022 Jun; 53(2):977-990. PubMed ID: 35174461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.