These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 24664682)

  • 21. Rod and rod-driven function in achromatopsia and blue cone monochromatism.
    Moskowitz A; Hansen RM; Akula JD; Eklund SE; Fulton AB
    Invest Ophthalmol Vis Sci; 2009 Feb; 50(2):950-8. PubMed ID: 18824728
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Slowed Dark Adaptation in Early AMD: Dual Stimulus Reveals Scotopic and Photopic Abnormalities.
    Tahir HJ; Rodrigo-Diaz E; Parry NRA; Kelly JMF; Carden D; Aslam TM; Murray IJ
    Invest Ophthalmol Vis Sci; 2018 Mar; 59(4):AMD202-AMD210. PubMed ID: 30398565
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rod and cone contrast gains derived from reaction time distribution modeling.
    Cao D; Pokorny J
    J Vis; 2010 Feb; 10(2):11.1-15. PubMed ID: 20462312
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rod-driven OFF pathway responses in the distal retina: dark-adapted flicker electroretinogram in mouse.
    Lei B
    PLoS One; 2012; 7(8):e43856. PubMed ID: 22937111
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of retinal structure and function in cone dystrophy with supernormal rod response.
    Abdelkader E; Yasir ZH; Khan AM; Raddadi O; Khandekar R; Alateeq N; Nowilaty S; AlShahrani N; Schatz P
    Doc Ophthalmol; 2020 Aug; 141(1):23-32. PubMed ID: 31960170
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mesopic background lights enhance dark-adapted cone ERG flash responses in the intact mouse retina: a possible role for gap junctional decoupling.
    Heikkinen H; Vinberg F; Nymark S; Koskelainen A
    J Neurophysiol; 2011 May; 105(5):2309-18. PubMed ID: 21389302
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An extended 15 Hz ERG protocol (2): data of normal subjects and patients with achromatopsia, CSNB1, and CSNB2.
    Bijveld MM; Riemslag FC; Kappers AM; Hoeben FP; van Genderen MM
    Doc Ophthalmol; 2011 Dec; 123(3):161-72. PubMed ID: 21947599
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genetic dissection of rod and cone pathways mediating light responses and receptive fields of ganglion cells in the mouse retina.
    Seilheimer RL; Sabharwal J; Wu SM
    Vision Res; 2020 Feb; 167():15-23. PubMed ID: 31887538
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Utility in clinical practice of standard vs. high-intensity ERG a-waves.
    Marcus M; Cabael L; Marmor MF
    Doc Ophthalmol; 2006 Nov; 113(3):145-53. PubMed ID: 17103246
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced retinal responses in Huntington's disease patients.
    Pearl JR; Heath LM; Bergey DE; Kelly JP; Smith C; Laurino MY; Weiss A; Price ND; LaSpada A; Bird TD; Jayadev S
    J Huntingtons Dis; 2017; 6(3):237-247. PubMed ID: 28968243
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rod- versus cone-driven ERGs at different stimulus sizes in normal subjects and retinitis pigmentosa patients.
    Aher AJ; McKeefry DJ; Parry NRA; Maguire J; Murray IJ; Tsai TI; Huchzermeyer C; Kremers J
    Doc Ophthalmol; 2018 Feb; 136(1):27-43. PubMed ID: 29134295
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rod-driven focal macular electroretinogram.
    Choshi T; Matsumoto CS; Nakatsuka K
    Jpn J Ophthalmol; 2003; 47(4):356-61. PubMed ID: 12842203
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contribution of post-receptoral cells to the a-wave of the human photopic electroretinogram.
    Bradshaw K
    Vision Res; 2007 Oct; 47(22):2878-88. PubMed ID: 17850841
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrophysiological testing as a method of cone-rod and cone dystrophy diagnoses and prediction of disease progression.
    Langwińska-Wośko E; Szulborski K; Zaleska-Żmijewska A; Szaflik J
    Doc Ophthalmol; 2015 Apr; 130(2):103-9. PubMed ID: 25603773
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The local cone and rod system function in early age-related macular degeneration.
    Chen C; Wu L; Wu D; Huang S; Wen F; Luo G; Long S
    Doc Ophthalmol; 2004 Jul; 109(1):1-8. PubMed ID: 15675195
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Early light deprivation effects on human cone-driven retinal function.
    Esposito Veneruso P; Ziccardi L; Magli G; Parisi V; Falsini B; Magli A
    Acta Ophthalmol; 2017 Mar; 95(2):133-139. PubMed ID: 27535202
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatially Resolved Spectral Sensitivities as a Potential Read-out Parameter in Clinical Gene Therapeutic Trials.
    Lorenz B; Wegscheider E; Hamel C; Preising MN; Stieger K
    Ophthalmic Res; 2017; 58(4):194-202. PubMed ID: 28697496
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Slowed recovery of human photopic ERG a-wave amplitude following intense bleaches: a slowing of cone pigment regeneration?
    Mahroo OA; Lamb TD
    Doc Ophthalmol; 2012 Oct; 125(2):137-47. PubMed ID: 22814870
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rods Contribute to Visual Behavior in Larval Zebrafish.
    Venkatraman P; Mills-Henry I; Padmanabhan KR; Pascuzzi P; Hassan M; Zhang J; Zhang X; Ma P; Pang CP; Dowling JE; Zhang M; Leung YF
    Invest Ophthalmol Vis Sci; 2020 Oct; 61(12):11. PubMed ID: 33049059
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Comparative study of the rod and cone contributions to the generation of b-wave ERG and tectal evoked potential in the dark-adapted carp].
    Garina NS; Erchenkov VG; Vorontsov DD; Semina TK
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2006; 56(5):698-705. PubMed ID: 17147211
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.