These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

487 related articles for article (PubMed ID: 24665998)

  • 21. Modeling the groundwater recharge in karst aquifers by using a reservoir model.
    Ke T; Shu L; Chen X
    Water Sci Technol; 2013; 68(2):406-12. PubMed ID: 23863435
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calculating man-made depletion of a stressed multiple aquifer resource on a national scale.
    Rödiger T; Magri F; Geyer S; Mallast U; Odeh T; Siebert C
    Sci Total Environ; 2020 Jul; 725():138478. PubMed ID: 32304968
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrological components of groundwater recharge in leaky aquifers adjacent to semipervious streambank: analytical study.
    Mahdavi A
    Environ Sci Pollut Res Int; 2022 Apr; 29(17):24833-24848. PubMed ID: 34826081
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modelling of recharge and pollutant fluxes to urban groundwaters.
    Thomas A; Tellam J
    Sci Total Environ; 2006 May; 360(1-3):158-79. PubMed ID: 16325236
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Climate change impact assessment in Veneto and Friuli Plain groundwater. Part II: a spatially resolved regional risk assessment.
    Pasini S; Torresan S; Rizzi J; Zabeo A; Critto A; Marcomini A
    Sci Total Environ; 2012 Dec; 440():219-35. PubMed ID: 22863150
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predicting impacts of increased CO₂ and climate change on the water cycle and water quality in the semiarid James River Basin of the Midwestern USA.
    Wu Y; Liu S; Gallant AL
    Sci Total Environ; 2012 Jul; 430():150-60. PubMed ID: 22641243
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling interactions between saturated and un-saturated zones by Hydrus-1D in semi-arid regions (plain of Kairouan, Central Tunisia).
    Saâdi M; Zghibi A; Kanzari S
    Environ Monit Assess; 2018 Feb; 190(3):170. PubMed ID: 29478086
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of highway greenbelt constrution on groundwater flow in a semi-arid region.
    Xia M; Dong S; Ma M; Li L; Jiang C
    Environ Geochem Health; 2024 Jun; 46(7):228. PubMed ID: 38849578
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The aquifer recharge: an overview of the legislative and planning aspect.
    De Giglio O; Caggiano G; Apollonio F; Marzella A; Brigida S; Ranieri E; Lucentini L; Uricchio VF; Montagna MT
    Ann Ig; 2018; 30(1):34-43. PubMed ID: 29215129
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mine water supply assessment and evaluation of the system response to the designed demand in a desert region, central Saudi Arabia.
    Yihdego Y; Drury L
    Environ Monit Assess; 2016 Nov; 188(11):619. PubMed ID: 27743279
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Numerical simulation to assess potential groundwater recharge and net groundwater use in a semi-arid region.
    Dash CJ; Sarangi A; Singh DK; Adhikary PP
    Environ Monit Assess; 2019 May; 191(6):371. PubMed ID: 31102073
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrochemical evolution and groundwater flow processes in the Galilee and Eromanga basins, Great Artesian Basin, Australia: a multivariate statistical approach.
    Moya CE; Raiber M; Taulis M; Cox ME
    Sci Total Environ; 2015 Mar; 508():411-26. PubMed ID: 25497681
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Groundwater resources in Brazil: a review of possible impacts caused by climate change.
    Hirata R; Conicelli BP
    An Acad Bras Cienc; 2012 Jun; 84(2):297-312. PubMed ID: 22634744
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Changes in Projected Spatial and Seasonal Groundwater Recharge in the Upper Colorado River Basin.
    Tillman FD; Gangopadhyay S; Pruitt T
    Ground Water; 2017 Jul; 55(4):506-518. PubMed ID: 28208211
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of Recharge Estimation Methods During a Wet Period in a Karst Aquifer.
    Guardiola-Albert C; Martos-Rosillo S; Pardo-Igúzquiza E; Durán Valsero JJ; Pedrera A; Jiménez-Gavilán P; Liñán Baena C
    Ground Water; 2015; 53(6):885-95. PubMed ID: 25510674
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigating effects of climate change, urbanization, and sea level changes on groundwater resources in a coastal aquifer: an integrated assessment.
    Akbarpour S; Niksokhan MH
    Environ Monit Assess; 2018 Sep; 190(10):579. PubMed ID: 30196319
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ecohydrologic process modeling of mountain block groundwater recharge.
    Magruder IA; Woessner WW; Running SW
    Ground Water; 2009; 47(6):774-85. PubMed ID: 19702780
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Forecasting natural aquifer discharge using a numerical model and convolution.
    Boggs KG; Johnson GS; Van Kirk R; Fairley JP
    Ground Water; 2014; 52(4):503-13. PubMed ID: 23914881
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction and evaluation of groundwater level changes in an over-exploited area of the Baiyangdian Lake Basin, China under the combined influence of climate change and ecological water recharge.
    Chi G; Su X; Lyu H; Li H; Xu G; Zhang Y
    Environ Res; 2022 Sep; 212(Pt A):113104. PubMed ID: 35381262
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Climate change impact assessment on Veneto and Friuli Plain groundwater. Part I: an integrated modeling approach for hazard scenario construction.
    Baruffi F; Cisotto A; Cimolino A; Ferri M; Monego M; Norbiato D; Cappelletto M; Bisaglia M; Pretner A; Galli A; Scarinci A; Marsala V; Panelli C; Gualdi S; Bucchignani E; Torresan S; Pasini S; Critto A; Marcomini A
    Sci Total Environ; 2012 Dec; 440():154-66. PubMed ID: 22940008
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.