These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 24666158)

  • 1. Effect of localized surface-plasmon mode on exciton transport and radiation emission in carbon nanotubes.
    Roslyak O; Cherqui C; Dunlap DH; Piryatinski A
    J Phys Chem B; 2014 Jul; 118(28):8070-80. PubMed ID: 24666158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of single-walled carbon nanotube nucleation, growth, and healing determined using QM/MD methods.
    Page AJ; Ohta Y; Irle S; Morokuma K
    Acc Chem Res; 2010 Oct; 43(10):1375-85. PubMed ID: 20954752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exciton-Plasmon Energy Exchange Drives the Transition to a Strong Coupling Regime.
    Shahbazyan TV
    Nano Lett; 2019 May; 19(5):3273-3279. PubMed ID: 30973738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface plasmon coupling with radiating dipole for enhancing the emission efficiency of a light-emitting diode.
    Kuo Y; Ting SY; Liao CH; Huang JJ; Chen CY; Hsieh C; Lu YC; Chen CY; Shen KC; Lu CF; Yeh DM; Wang JY; Chuang WH; Kiang YW; Yang CC
    Opt Express; 2011 Jul; 19 Suppl 4():A914-29. PubMed ID: 21747562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy transfer efficiency in the chromophore network strongly coupled to a vibrational mode.
    Mourokh LG; Nori F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052720. PubMed ID: 26651736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exciton multiplication from first principles.
    Jaeger HM; Hyeon-Deuk K; Prezhdo OV
    Acc Chem Res; 2013 Jun; 46(6):1280-9. PubMed ID: 23459543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoluminescence Dynamics of Aryl sp(3) Defect States in Single-Walled Carbon Nanotubes.
    Hartmann NF; Velizhanin KA; Haroz EH; Kim M; Ma X; Wang Y; Htoon H; Doorn SK
    ACS Nano; 2016 Sep; 10(9):8355-65. PubMed ID: 27529740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exciton coherence and energy transport in the light-harvesting dimers of allophycocyanin.
    Womick JM; Moran AM
    J Phys Chem B; 2009 Dec; 113(48):15747-59. PubMed ID: 19894754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intrinsically ultrastrong plasmon-exciton interactions in crystallized films of carbon nanotubes.
    Ho PH; Farmer DB; Tulevski GS; Han SJ; Bishop DM; Gignac LM; Bucchignano J; Avouris P; Falk AL
    Proc Natl Acad Sci U S A; 2018 Dec; 115(50):12662-12667. PubMed ID: 30459274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear photoluminescence spectroscopy of carbon nanotubes with localized exciton states.
    Iwamura M; Akizuki N; Miyauchi Y; Mouri S; Shaver J; Gao Z; Cognet L; Lounis B; Matsuda K
    ACS Nano; 2014 Nov; 8(11):11254-60. PubMed ID: 25331628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cascaded plasmon-plasmon coupling mediated energy transfer across stratified metal-dielectric nanostructures.
    Golmakaniyoon S; Hernandez-Martinez PL; Demir HV; Sun XW
    Sci Rep; 2016 Oct; 6():34086. PubMed ID: 27698422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spaser made of graphene and carbon nanotubes.
    Rupasinghe C; Rukhlenko ID; Premaratne M
    ACS Nano; 2014 Mar; 8(3):2431-8. PubMed ID: 24559464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal physics in carbon nanotube growth kinetics.
    Louchev OA; Kanda H; Rosén A; Bolton K
    J Chem Phys; 2004 Jul; 121(1):446-56. PubMed ID: 15260566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influences of Exciton Diffusion and Exciton-Exciton Annihilation on Photon Emission Statistics of Carbon Nanotubes.
    Ma X; Roslyak O; Duque JG; Pang X; Doorn SK; Piryatinski A; Dunlap DH; Htoon H
    Phys Rev Lett; 2015 Jul; 115(1):017401. PubMed ID: 26182119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coherently-enabled environmental control of optics and energy transfer pathways of hybrid quantum dot-metallic nanoparticle systems.
    Hatef A; Sadeghi SM; Fortin-DeschĂȘnes S; Boulais E; Meunier M
    Opt Express; 2013 Mar; 21(5):5643-53. PubMed ID: 23482138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coherent exciton dynamics in supramolecular light-harvesting nanotubes revealed by ultrafast quantum process tomography.
    Yuen-Zhou J; Arias DH; Eisele DM; Steiner CP; Krich JJ; Bawendi MG; Nelson KA; Aspuru-Guzik A
    ACS Nano; 2014 Jun; 8(6):5527-34. PubMed ID: 24724614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions.
    Cognet L; Tsyboulski DA; Rocha JD; Doyle CD; Tour JM; Weisman RB
    Science; 2007 Jun; 316(5830):1465-8. PubMed ID: 17556581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploiting One-Dimensional Exciton-Phonon Coupling for Tunable and Efficient Single-Photon Generation with a Carbon Nanotube.
    Jeantet A; Chassagneux Y; Claude T; Roussignol P; Lauret JS; Reichel J; Voisin C
    Nano Lett; 2017 Jul; 17(7):4184-4188. PubMed ID: 28641011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exciton diffusion in air-suspended single-walled carbon nanotubes.
    Moritsubo S; Murai T; Shimada T; Murakami Y; Chiashi S; Maruyama S; Kato YK
    Phys Rev Lett; 2010 Jun; 104(24):247402. PubMed ID: 20867335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
    Kanemitsu Y
    Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.