BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 24666319)

  • 1. Adventitious root formation in tree species: involvement of transcription factors.
    Legué V; Rigal A; Bhalerao RP
    Physiol Plant; 2014 Jun; 151(2):192-8. PubMed ID: 24666319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auxin is a central player in the hormone cross-talks that control adventitious rooting.
    Pacurar DI; Perrone I; Bellini C
    Physiol Plant; 2014 May; 151(1):83-96. PubMed ID: 24547793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The WUSCHEL-related homeobox 5a (PtoWOX5a) is involved in adventitious root development in poplar.
    Li J; Zhang J; Jia H; Liu B; Sun P; Hu J; Wang L; Lu M
    Tree Physiol; 2018 Jan; 38(1):139-153. PubMed ID: 29036435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and expression analysis of twenty ARF genes in Populus.
    Yang C; Xu M; Xuan L; Jiang X; Huang M
    Gene; 2014 Jul; 544(2):134-44. PubMed ID: 24786213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification, characterization of an AP2/ERF transcription factor that promotes adventitious, lateral root formation in Populus.
    Trupiano D; Yordanov Y; Regan S; Meilan R; Tschaplinski T; Scippa GS; Busov V
    Planta; 2013 Aug; 238(2):271-82. PubMed ID: 23645259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The AINTEGUMENTA LIKE1 homeotic transcription factor PtAIL1 controls the formation of adventitious root primordia in poplar.
    Rigal A; Yordanov YS; Perrone I; Karlberg A; Tisserant E; Bellini C; Busov VB; Martin F; Kohler A; Bhalerao R; Legué V
    Plant Physiol; 2012 Dec; 160(4):1996-2006. PubMed ID: 23077242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of PeRHD3 alters the root architecture in Populus.
    Xu M; Xie W; Huang M
    Biochem Biophys Res Commun; 2012 Jul; 424(2):239-44. PubMed ID: 22732403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of genetic, genomic and transcriptomic information identifies putative regulators of adventitious root formation in Populus.
    Ribeiro CL; Silva CM; Drost DR; Novaes E; Novaes CR; Dervinis C; Kirst M
    BMC Plant Biol; 2016 Mar; 16():66. PubMed ID: 26983547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The auxin receptor TIR1 homolog (PagFBL 1) regulates adventitious rooting through interactions with Aux/IAA28 in Populus.
    Shu W; Zhou H; Jiang C; Zhao S; Wang L; Li Q; Yang Z; Groover A; Lu MZ
    Plant Biotechnol J; 2019 Feb; 17(2):338-349. PubMed ID: 29949229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cytokinin type-B response regulator PtRR13 is a negative regulator of adventitious root development in Populus.
    Ramírez-Carvajal GA; Morse AM; Dervinis C; Davis JM
    Plant Physiol; 2009 Jun; 150(2):759-71. PubMed ID: 19395410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two WUSCHEL-related HOMEOBOX genes, PeWOX11a and PeWOX11b, are involved in adventitious root formation of poplar.
    Xu M; Xie W; Huang M
    Physiol Plant; 2015 Dec; 155(4):446-56. PubMed ID: 25998748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of PTM5 protein interaction partners, a MADS-box gene involved in aspen tree vegetative development.
    Cseke LJ; Ravinder N; Pandey AK; Podila GK
    Gene; 2007 Apr; 391(1-2):209-22. PubMed ID: 17331677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early steps of adventitious rooting: morphology, hormonal profiling and carbohydrate turnover in carnation stem cuttings.
    Agulló-Antón MÁ; Ferrández-Ayela A; Fernández-García N; Nicolás C; Albacete A; Pérez-Alfocea F; Sánchez-Bravo J; Pérez-Pérez JM; Acosta M
    Physiol Plant; 2014 Mar; 150(3):446-62. PubMed ID: 24117983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of genes regulated by histone acetylation during root development in Populus trichocarpa.
    Ma X; Zhang C; Zhang B; Yang C; Li S
    BMC Genomics; 2016 Feb; 17():96. PubMed ID: 26847576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermospermine levels are controlled by an auxin-dependent feedback loop mechanism in Populus xylem.
    Milhinhos A; Prestele J; Bollhöner B; Matos A; Vera-Sirera F; Rambla JL; Ljung K; Carbonell J; Blázquez MA; Tuominen H; Miguel CM
    Plant J; 2013 Aug; 75(4):685-98. PubMed ID: 23647338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive analysis of dynamic gene expression and investigation of the roles of hydrogen peroxide during adventitious rooting in poplar.
    Zhang Y; Xiao Z; Zhan C; Liu M; Xia W; Wang N
    BMC Plant Biol; 2019 Mar; 19(1):99. PubMed ID: 30866829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localized gene expression changes during adventitious root formation in black walnut (Juglans nigra L.).
    Stevens ME; Woeste KE; Pijut PM
    Tree Physiol; 2018 Jun; 38(6):877-894. PubMed ID: 29378021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling transcriptional networks regulating secondary growth and wood formation in forest trees.
    Liu L; Filkov V; Groover A
    Physiol Plant; 2014 Jun; 151(2):156-63. PubMed ID: 24117954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation, characterization and expression analysis of the BABY BOOM (BBM) gene from Larix kaempferi × L. olgensis during adventitious rooting.
    Li KP; Sun XM; Han H; Zhang SG
    Gene; 2014 Nov; 551(2):111-8. PubMed ID: 25128582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome dynamics of rooting zone and aboveground parts of cuttings during adventitious root formation in Cryptomeria japonica D. Don.
    Fukuda Y; Hirao T; Mishima K; Ohira M; Hiraoka Y; Takahashi M; Watanabe A
    BMC Plant Biol; 2018 Sep; 18(1):201. PubMed ID: 30231856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.