These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 24666422)

  • 1. Reduction of the water wettability of cellulose film through controlled heterogeneous modification.
    Li W; Wu Y; Liang W; Li B; Liu S
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5726-34. PubMed ID: 24666422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Facile Pathway to Modify Cellulose Composite Film by Reducing Wettability and Improving Barrier towards Moisture.
    Hu X; Chen L; Tao D; Ma Z; Liu S
    Materials (Basel); 2017 Jan; 10(1):. PubMed ID: 28772399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance behavior of modified cellulosic fabrics using polyurethane acrylate copolymer.
    Zuber M; Shah SA; Jamil T; Asghar MI
    Int J Biol Macromol; 2014 Jun; 67():254-9. PubMed ID: 24661889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis, characterization and biomedical properties of UV-cured polyurethane acrylates containing a phosphorylcholine structure.
    Xu Y; Dong A; Zhao Y; Zhang T; Jiang Z; Wang S; Chen H
    J Biomater Sci Polym Ed; 2012; 23(16):2089-104. PubMed ID: 22105007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical and plasma surface modification of lignocellulose coconut waste for the preparation of advanced biobased composite materials.
    Kocaman S; Karaman M; Gursoy M; Ahmetli G
    Carbohydr Polym; 2017 Mar; 159():48-57. PubMed ID: 28038753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controllable stearic acid crystal induced high hydrophobicity on cellulose film surface.
    He M; Xu M; Zhang L
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):585-91. PubMed ID: 23289586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat insulation performance, mechanics and hydrophobic modification of cellulose-SiO2 composite aerogels.
    Shi J; Lu L; Guo W; Zhang J; Cao Y
    Carbohydr Polym; 2013 Oct; 98(1):282-9. PubMed ID: 23987346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel cellulose-gelatin composite films made from self-dispersed microgels: Structure and properties.
    Yao Y; Wang H; Wang R; Chai Y
    Int J Biol Macromol; 2019 Feb; 123():991-1001. PubMed ID: 30465835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The preparation, characterization and evaluation of regenerated cellulose/collagen composite hydrogel films.
    Cheng Y; Lu J; Liu S; Zhao P; Lu G; Chen J
    Carbohydr Polym; 2014 Jul; 107():57-64. PubMed ID: 24702918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of nano cellulose fibers and effect on thermoplastics starch based films.
    Savadekar NR; Mhaske ST
    Carbohydr Polym; 2012 Jun; 89(1):146-51. PubMed ID: 24750616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reducing water sensitivity of alginate bio-nanocomposite film using cellulose nanoparticles.
    Abdollahi M; Alboofetileh M; Behrooz R; Rezaei M; Miraki R
    Int J Biol Macromol; 2013 Mar; 54():166-73. PubMed ID: 23262388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical and Mechanical Characterization of Licorice Root and Palm Leaf Waste Incorporated into Poly(urethane-acrylate) (PUA).
    Gabrielli S; Pastore G; Stella F; Marcantoni E; Sarasini F; Tirillò J; Santulli C
    Molecules; 2021 Dec; 26(24):. PubMed ID: 34946764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-barrier coated bacterial cellulose nanowhiskers films with reduced moisture sensitivity.
    Martínez-Sanz M; Lopez-Rubio A; Lagaron JM
    Carbohydr Polym; 2013 Oct; 98(1):1072-82. PubMed ID: 23987449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multifunctional coating films by layer-by-layer deposition of cellulose and chitin nanofibrils.
    Qi ZD; Saito T; Fan Y; Isogai A
    Biomacromolecules; 2012 Feb; 13(2):553-8. PubMed ID: 22251371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water-repellent cellulose fiber networks with multifunctional properties.
    Bayer IS; Fragouli D; Attanasio A; Sorce B; Bertoni G; Brescia R; Di Corato R; Pellegrino T; Kalyva M; Sabella S; Pompa PP; Cingolani R; Athanassiou A
    ACS Appl Mater Interfaces; 2011 Oct; 3(10):4024-31. PubMed ID: 21902239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile adjustment on cellulose nanocrystals composite films with glycerol and benzyl acrylate copolymer for enhanced UV shielding property.
    Ren Y; Ma J; Liu W; Huang C; Lai C; Ling Z; Yong Q
    Int J Biol Macromol; 2022 Apr; 204():41-49. PubMed ID: 35122797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Porous structures of polymer films prepared by spin coating with mixed solvents under humid condition.
    Park MS; Joo W; Kim JK
    Langmuir; 2006 May; 22(10):4594-8. PubMed ID: 16649769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellulose nanocrystals reinforced environmentally-friendly waterborne polyurethane nanocomposites.
    Santamaria-Echart A; Ugarte L; García-Astrain C; Arbelaiz A; Corcuera MA; Eceiza A
    Carbohydr Polym; 2016 Oct; 151():1203-1209. PubMed ID: 27474671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellulose microfibrils grafted with PBA via surface-initiated atom transfer radical polymerization for biocomposite reinforcement.
    Li S; Xiao M; Zheng A; Xiao H
    Biomacromolecules; 2011 Sep; 12(9):3305-12. PubMed ID: 21797219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The development of chiral nematic mesoporous materials.
    Kelly JA; Giese M; Shopsowitz KE; Hamad WY; MacLachlan MJ
    Acc Chem Res; 2014 Apr; 47(4):1088-96. PubMed ID: 24694253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.