These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 24666634)

  • 41. Whole-lake nitrate addition for control of methylmercury in mercury-contaminated Onondaga Lake, NY.
    Matthews DA; Babcock DB; Nolan JG; Prestigiacomo AR; Effler SW; Driscoll CT; Todorova SG; Kuhr KM
    Environ Res; 2013 Aug; 125():52-60. PubMed ID: 23683521
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mercury dynamics of a temperate forested wetland.
    Galloway ME; Branfireun BA
    Sci Total Environ; 2004 Jun; 325(1-3):239-54. PubMed ID: 15144792
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cyanobacteria enhance methylmercury production: a hypothesis tested in the periphyton of two lakes in the Pantanal floodplain, Brazil.
    Lázaro WL; Guimarães JR; Ignácio AR; Da Silva CJ; Díez S
    Sci Total Environ; 2013 Jul; 456-457():231-8. PubMed ID: 23602976
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nitrate controls methyl mercury production in a streambed bioreactor.
    Shih R; Robertson WD; Schiff SL; Rudolph DL
    J Environ Qual; 2011; 40(5):1586-92. PubMed ID: 21869521
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Permafrost conditions in peatlands regulate magnitude, timing, and chemical composition of catchment dissolved organic carbon export.
    Olefeldt D; Roulet NT
    Glob Chang Biol; 2014 Oct; 20(10):3122-36. PubMed ID: 24753046
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Concentrations of methylmercury in invertebrates from wetlands of the Prairie Pothole Region of North America.
    Bates LM; Hall BD
    Environ Pollut; 2012 Jan; 160(1):153-60. PubMed ID: 22035939
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Distribution of total and methylmercury in different ecosystem compartments in the Everglades: implications for mercury bioaccumulation.
    Liu G; Cai Y; Philippi T; Kalla P; Scheidt D; Richards J; Scinto L; Appleby C
    Environ Pollut; 2008 May; 153(2):257-65. PubMed ID: 17945404
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sediment-adsorbed total mercury flux through Yolo Bypass, the primary floodway and wetland in the Sacramento Valley, California.
    Springborn M; Singer MB; Dunne T
    Sci Total Environ; 2011 Dec; 412-413():203-13. PubMed ID: 22078330
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Methyl mercury production and loss in Arctic soil.
    Oiffer L; Siciliano SD
    Sci Total Environ; 2009 Feb; 407(5):1691-700. PubMed ID: 19081608
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Agriculture has changed the amount and composition of dissolved organic matter in Central European headwater streams.
    Graeber D; Gelbrecht J; Pusch MT; Anlanger C; von Schiller D
    Sci Total Environ; 2012 Nov; 438():435-46. PubMed ID: 23026150
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mercury and methylmercury in the Gulf of Trieste (northern Adriatic Sea).
    Faganeli J; Horvat M; Covelli S; Fajon V; Logar M; Lipej L; Cermelj B
    Sci Total Environ; 2003 Mar; 304(1-3):315-26. PubMed ID: 12663193
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of vegetation on methylmercury concentrations and loads in a mercury contaminated floodplain.
    Heim WA; Bosworth D; DiGiorgio C; Stephenson M; Gill G
    Sci Total Environ; 2023 Nov; 901():165864. PubMed ID: 37516180
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Temporal analysis of net fluvial methylmercury loading in a dystrophic and a clear water lake.
    Mills RB; Bodek T; Paterson AM; Blais JM; Lean DR
    Sci Total Environ; 2009 Aug; 407(16):4696-702. PubMed ID: 19447474
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Estimation of the major source and sink of methylmercury in the Florida Everglades.
    Li Y; Yin Y; Liu G; Tachiev G; Roelant D; Jiang G; Cai Y
    Environ Sci Technol; 2012 Jun; 46(11):5885-93. PubMed ID: 22536798
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Strategies to lower methyl mercury concentrations in hydroelectric reservoirs and lakes: A review.
    Mailman M; Stepnuk L; Cicek N; Bodaly RA
    Sci Total Environ; 2006 Sep; 368(1):224-35. PubMed ID: 16343602
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Spatiotemporal variation in methylmercury and related water quality variables in a temperate river under highly dynamic hydrologic conditions.
    Jung E; Park S; Kim H; Han S
    Sci Total Environ; 2024 Jul; 932():173090. PubMed ID: 38729360
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Carbon cycling and exports over diel and flood-recovery timescales in a subtropical rainforest headwater stream.
    Looman A; Santos IR; Tait DR; Webb JR; Sullivan CA; Maher DT
    Sci Total Environ; 2016 Apr; 550():645-657. PubMed ID: 26849329
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Storage and release of road-salt contamination from a calcareous lake-basin fen, western Massachusetts, USA.
    Rhodes AL; Guswa AJ
    Sci Total Environ; 2016 Mar; 545-546():525-45. PubMed ID: 26760273
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Crop exports desiccate deserts.
    Scarrow R
    Nat Plants; 2018 Mar; 4(3):130. PubMed ID: 29483682
    [No Abstract]   [Full Text] [Related]  

  • 60. Reprint of "Methylmercury production in and export from agricultural wetlands in California, USA: the need to account for physical transport processes into and out of the root zone".
    Bachand PA; Bachand SM; Fleck JA; Alpers CN; Stephenson M; Windham-Myers L
    Sci Total Environ; 2014 Jun; 484():249-62. PubMed ID: 24666634
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.