These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 24666776)

  • 1. From SNP co-association to RNA co-expression: novel insights into gene networks for intramuscular fatty acid composition in porcine.
    Ramayo-Caldas Y; Ballester M; Fortes MR; Esteve-Codina A; Castelló A; Noguera JL; Fernández AI; Pérez-Enciso M; Reverter A; Folch JM
    BMC Genomics; 2014 Mar; 15():232. PubMed ID: 24666776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of porcine adipose tissue transcriptome reveals differences in de novo fatty acid synthesis in pigs with divergent muscle fatty acid composition.
    Corominas J; Ramayo-Caldas Y; Puig-Oliveras A; Estellé J; Castelló A; Alves E; Pena RN; Ballester M; Folch JM
    BMC Genomics; 2013 Dec; 14():843. PubMed ID: 24289474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of candidate regulatory genes for intramuscular fatty acid composition in pigs by transcriptome analysis.
    Valdés-Hernández J; Folch JM; Crespo-Piazuelo D; Passols M; Sebastià C; Criado-Mesas L; Castelló A; Sánchez A; Ramayo-Caldas Y
    Genet Sel Evol; 2024 Feb; 56(1):12. PubMed ID: 38347496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The pig p160 co-activator family: full length cDNA cloning, expression and effects on intramuscular fat content in Longissimus Dorsi muscle.
    Wang X; Chen J; Liu H; Xu Y; Wang X; Xue C; Yu D; Jiang Z
    Domest Anim Endocrinol; 2008 Aug; 35(2):208-16. PubMed ID: 18638664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A marker-derived gene network reveals the regulatory role of PPARGC1A, HNF4G, and FOXP3 in intramuscular fat deposition of beef cattle.
    Ramayo-Caldas Y; Fortes MR; Hudson NJ; Porto-Neto LR; Bolormaa S; Barendse W; Kelly M; Moore SS; Goddard ME; Lehnert SA; Reverter A
    J Anim Sci; 2014 Jul; 92(7):2832-45. PubMed ID: 24778332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liver transcriptome profile in pigs with extreme phenotypes of intramuscular fatty acid composition.
    Ramayo-Caldas Y; Mach N; Esteve-Codina A; Corominas J; Castelló A; Ballester M; Estellé J; Ibáñez-Escriche N; Fernández AI; Pérez-Enciso M; Folch JM
    BMC Genomics; 2012 Oct; 13():547. PubMed ID: 23051667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SNP co-association and network analyses identify E2F3, KDM5A and BACH2 as key regulators of the bovine milk fatty acid profile.
    Pegolo S; Dadousis C; Mach N; Ramayo-Caldas Y; Mele M; Conte G; Schiavon S; Bittante G; Cecchinato A
    Sci Rep; 2017 Dec; 7(1):17317. PubMed ID: 29230020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression profiling analysis for genes related to meat quality and carcass traits during postnatal development of backfat in two pig breeds.
    Li M; Zhu L; Li X; Shuai S; Teng X; Xiao H; Li Q; Chen L; Guo Y; Wang J
    Sci China C Life Sci; 2008 Aug; 51(8):718-33. PubMed ID: 18677600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide analysis of porcine backfat and intramuscular fat fatty acid composition using high-density genotyping and expression data.
    Muñoz M; Rodríguez MC; Alves E; Folch JM; Ibañez-Escriche N; Silió L; Fernández AI
    BMC Genomics; 2013 Dec; 14(1):845. PubMed ID: 24295214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in muscle transcriptome among pigs phenotypically extreme for fatty acid composition.
    Puig-Oliveras A; Ramayo-Caldas Y; Corominas J; Estellé J; Pérez-Montarelo D; Hudson NJ; Casellas J; Folch JM; Ballester M
    PLoS One; 2014; 9(6):e99720. PubMed ID: 24926690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global analysis of the association between pig muscle fatty acid composition and gene expression using RNA-Seq.
    Valdés-Hernández J; Ramayo-Caldas Y; Passols M; Sebastià C; Criado-Mesas L; Crespo-Piazuelo D; Esteve-Codina A; Castelló A; Sánchez A; Folch JM
    Sci Rep; 2023 Jan; 13(1):535. PubMed ID: 36631502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptomic Analysis Identifies Candidate Genes Related to Intramuscular Fat Deposition and Fatty Acid Composition in the Breast Muscle of Squabs (Columba).
    Ye M; Zhou B; Wei S; Ding M; Lu X; Shi X; Ding J; Yang S; Wei W
    G3 (Bethesda); 2016 Jul; 6(7):2081-90. PubMed ID: 27175015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dietary fat has minimal effects on fatty acid metabolism transcript concentrations in pigs.
    Ding ST; Lapillonne A; Heird WC; Mersmann HJ
    J Anim Sci; 2003 Feb; 81(2):423-31. PubMed ID: 12643486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression analysis of porcine miR-33a/b in liver, adipose tissue and muscle and its potential role in fatty acid metabolism.
    Criado-Mesas L; Ballester M; Crespo-Piazuelo D; Passols M; Castelló A; Sánchez A; Folch JM
    PLoS One; 2021; 16(1):e0245858. PubMed ID: 33497399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing the mRNA expression profile and the genetic determinism of intramuscular fat traits in the porcine gluteus medius and longissimus dorsi muscles.
    González-Prendes R; Quintanilla R; Mármol-Sánchez E; Pena RN; Ballester M; Cardoso TF; Manunza A; Casellas J; Cánovas Á; Díaz I; Noguera JL; Castelló A; Mercadé A; Amills M
    BMC Genomics; 2019 Mar; 20(1):170. PubMed ID: 30832586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of UBE3C polymorphisms on intramuscular fat content and fatty acid composition in Duroc pigs.
    Supakankul P; Mekchay S
    Genet Mol Res; 2016 Aug; 15(3):. PubMed ID: 27706631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide association study for intramuscular fatty acid composition in an Iberian × Landrace cross.
    Ramayo-Caldas Y; Mercadé A; Castelló A; Yang B; Rodríguez C; Alves E; Díaz I; Ibáñez-Escriche N; Noguera JL; Pérez-Enciso M; Fernández AI; Folch JM
    J Anim Sci; 2012 Sep; 90(9):2883-93. PubMed ID: 22785162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single nucleotide polymorphism scanning and expression of the pig PPARGC1A gene in different breeds.
    Li Q; Wang Z; Zhang B; Lu Y; Yang Y; Ban D; Wu C; Zhang H
    Lipids; 2014 Oct; 49(10):1047-55. PubMed ID: 25004892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adipose tissue transcriptional response of lipid metabolism genes in growing Iberian pigs fed oleic acid v. carbohydrate enriched diets.
    Benítez R; Núñez Y; Fernández A; Isabel B; Rodríguez C; Daza A; López-Bote C; Silió L; Óvilo C
    Animal; 2016 Jun; 10(6):939-46. PubMed ID: 27074956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-Wide Analysis of mRNAs and lncRNAs of Intramuscular Fat Related to Lipid Metabolism in Two Pig Breeds.
    Huang W; Zhang X; Li A; Xie L; Miao X
    Cell Physiol Biochem; 2018; 50(6):2406-2422. PubMed ID: 30423578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.