These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

492 related articles for article (PubMed ID: 24666997)

  • 1. Phylogenetic analysis of pectin-related gene families in Physcomitrella patens and nine other plant species yields evolutionary insights into cell walls.
    McCarthy TW; Der JP; Honaas LA; dePamphilis CW; Anderson CT
    BMC Plant Biol; 2014 Mar; 14():79. PubMed ID: 24666997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional identification of an Arabidopsis pectin biosynthetic homogalacturonan galacturonosyltransferase.
    Sterling JD; Atmodjo MA; Inwood SE; Kumar Kolli VS; Quigley HF; Hahn MG; Mohnen D
    Proc Natl Acad Sci U S A; 2006 Mar; 103(13):5236-41. PubMed ID: 16540543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative genome analysis of PME and PMEI families reveals the evolution of pectin metabolism in plant cell walls.
    Wang M; Yuan D; Gao W; Li Y; Tan J; Zhang X
    PLoS One; 2013; 8(8):e72082. PubMed ID: 23951288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arabidopsis thaliana T-DNA mutants implicate GAUT genes in the biosynthesis of pectin and xylan in cell walls and seed testa.
    Caffall KH; Pattathil S; Phillips SE; Hahn MG; Mohnen D
    Mol Plant; 2009 Sep; 2(5):1000-14. PubMed ID: 19825675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell wall biology of the moss Physcomitrium patens.
    Ye ZH; Zhong R
    J Exp Bot; 2022 Jul; 73(13):4440-4453. PubMed ID: 35348679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental changes in guard cell wall structure and pectin composition in the moss Funaria: implications for function and evolution of stomata.
    Merced A; Renzaglia K
    Ann Bot; 2014 Oct; 114(5):1001-10. PubMed ID: 25129633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The ability of land plants to synthesize glucuronoxylans predates the evolution of tracheophytes.
    Kulkarni AR; Peña MJ; Avci U; Mazumder K; Urbanowicz BR; Pattathil S; Yin Y; O'Neill MA; Roberts AW; Hahn MG; Xu Y; Darvill AG; York WS
    Glycobiology; 2012 Mar; 22(3):439-51. PubMed ID: 22048859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional divergence of the glutathione S-transferase supergene family in Physcomitrella patens reveals complex patterns of large gene family evolution in land plants.
    Liu YJ; Han XM; Ren LL; Yang HL; Zeng QY
    Plant Physiol; 2013 Feb; 161(2):773-86. PubMed ID: 23188805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An evolutionary view of functional diversity in family 1 glycosyltransferases.
    Yonekura-Sakakibara K; Hanada K
    Plant J; 2011 Apr; 66(1):182-93. PubMed ID: 21443631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Partial functional conservation of IRX10 homologs in physcomitrella patens and Arabidopsis thaliana indicates an evolutionary step contributing to vascular formation in land plants.
    Hörnblad E; Ulfstedt M; Ronne H; Marchant A
    BMC Plant Biol; 2013 Jan; 13():3. PubMed ID: 23286876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein encoding genes in an ancient plant: analysis of codon usage, retained genes and splice sites in a moss, Physcomitrella patens.
    Rensing SA; Fritzowsky D; Lang D; Reski R
    BMC Genomics; 2005 Mar; 6():43. PubMed ID: 15784153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The family of CONSTANS-like genes in Physcomitrella patens.
    Zobell O; Coupland G; Reiss B
    Plant Biol (Stuttg); 2005 May; 7(3):266-75. PubMed ID: 15912446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cellulose synthase (CESA) gene superfamily of the moss Physcomitrella patens.
    Roberts AW; Bushoven JT
    Plant Mol Biol; 2007 Jan; 63(2):207-19. PubMed ID: 17006591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Same but different - pseudo-pectin in the charophytic alga Chlorokybus atmophyticus.
    Rapin MN; Murray L; Sadler IH; Bothwell JH; Fry SC
    Physiol Plant; 2023; 175(6):e14079. PubMed ID: 38148229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pectin metabolism and assembly in the cell wall of the charophyte green alga Penium margaritaceum.
    Domozych DS; Sørensen I; Popper ZA; Ochs J; Andreas A; Fangel JU; Pielach A; Sacks C; Brechka H; Ruisi-Besares P; Willats WG; Rose JK
    Plant Physiol; 2014 May; 165(1):105-18. PubMed ID: 24652345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Portrait of the expansin superfamily in Physcomitrella patens: comparisons with angiosperm expansins.
    Carey RE; Cosgrove DJ
    Ann Bot; 2007 Jun; 99(6):1131-41. PubMed ID: 17416912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for land plant cell wall biosynthetic mechanisms in charophyte green algae.
    Mikkelsen MD; Harholt J; Ulvskov P; Johansen IE; Fangel JU; Doblin MS; Bacic A; Willats WG
    Ann Bot; 2014 Oct; 114(6):1217-36. PubMed ID: 25204387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular evolution and expression divergence of the Populus polygalacturonase supergene family shed light on the evolution of increasingly complex organs in plants.
    Yang ZL; Liu HJ; Wang XR; Zeng QY
    New Phytol; 2013 Mar; 197(4):1353-1365. PubMed ID: 23346984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homogalacturonan-modifying enzymes: structure, expression, and roles in plants.
    Sénéchal F; Wattier C; Rustérucci C; Pelloux J
    J Exp Bot; 2014 Oct; 65(18):5125-60. PubMed ID: 25056773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydroxyproline O-arabinosyltransferase mutants oppositely alter tip growth in Arabidopsis thaliana and Physcomitrella patens.
    MacAlister CA; Ortiz-Ramírez C; Becker JD; Feijó JA; Lippman ZB
    Plant J; 2016 Jan; 85(2):193-208. PubMed ID: 26577059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.