BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 2466716)

  • 1. Calcification of in vitro developed hypertrophic cartilage.
    Tacchetti C; Quarto R; Campanile G; Cancedda R
    Dev Biol; 1989 Apr; 132(2):442-7. PubMed ID: 2466716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and secretion of Ch 21 protein in embryonic chick skeletal tissues.
    Manduca P; Descalzi Cancedda F; Tacchetti C; Quarto R; Fossa P; Cancedda R
    Eur J Cell Biol; 1989 Oct; 50(1):154-61. PubMed ID: 2693089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypertrophic chondrocytes undergo further differentiation in culture.
    Descalzi Cancedda F; Gentili C; Manduca P; Cancedda R
    J Cell Biol; 1992 Apr; 117(2):427-35. PubMed ID: 1560033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro morphogenesis of chick embryo hypertrophic cartilage.
    Tacchetti C; Quarto R; Nitsch L; Hartmann DJ; Cancedda R
    J Cell Biol; 1987 Aug; 105(2):999-1006. PubMed ID: 3305525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene expression and extracellular matrix ultrastructure of a mineralizing chondrocyte cell culture system.
    Gerstenfeld LC; Landis WJ
    J Cell Biol; 1991 Feb; 112(3):501-13. PubMed ID: 1991793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Requirement of vitamin C for cartilage calcification in a differentiating chick limb-bud mesenchymal cell culture.
    Boskey AL; Stiner D; Doty SB; Binderman I
    Bone; 1991; 12(4):277-82. PubMed ID: 1793679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcification of chick vertebral chondrocytes grown in agarose gels: a biochemical and ultrastructural study.
    Hunter GK; Holmyard DP; Pritzker KP
    J Cell Sci; 1993 Apr; 104 ( Pt 4)():1031-8. PubMed ID: 8314888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constitutive myc expression impairs hypertrophy and calcification in cartilage.
    Quarto R; Dozin B; Tacchetti C; Robino G; Zenke M; Campanile G; Cancedda R
    Dev Biol; 1992 Jan; 149(1):168-76. PubMed ID: 1728587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term organ culture of embryonic chick femora: a system for investigating bone and cartilage formation at an intermediate level of organization.
    Roach HI
    J Bone Miner Res; 1990 Jan; 5(1):85-100. PubMed ID: 2309583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New observations on the development of the embryonic chick femur: cartilage calcification before resorption.
    Laborde C
    Bone Miner; 1988 Jun; 4(2):147-56. PubMed ID: 3191277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulatory mechanisms in the development of bone and cartilage: the use of tissue culture techniques in the study of the development of embryonic bone and cartilage: a perspective.
    Nijweide PJ; Burger EH; Hekkelman JW; Herrmann-Erlee MP; Gaillard PJ
    Prog Clin Biol Res; 1982; 101():457-80. PubMed ID: 7156153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chondrocyte apoptosis is not essential for cartilage calcification: evidence from an in vitro avian model.
    Pourmand EP; Binderman I; Doty SB; Kudryashov V; Boskey AL
    J Cell Biochem; 2007 Jan; 100(1):43-57. PubMed ID: 16888817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developmentally regulated synthesis of a low molecular weight protein (Ch 21) by differentiating chondrocytes.
    Descalzi Cancedda F; Manduca P; Tacchetti C; Fossa P; Quarto R; Cancedda R
    J Cell Biol; 1988 Dec; 107(6 Pt 1):2455-63. PubMed ID: 3143737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coordinate regulation of collagen and alkaline phosphatase levels in chick embryo chondrocytes.
    Habuchi H; Conrad HE; Glaser JH
    J Biol Chem; 1985 Oct; 260(24):13029-34. PubMed ID: 4055731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell proliferation, extracellular matrix mineralization, and ovotransferrin transient expression during in vitro differentiation of chick hypertrophic chondrocytes into osteoblast-like cells.
    Gentili C; Bianco P; Neri M; Malpeli M; Campanile G; Castagnola P; Cancedda R; Cancedda FD
    J Cell Biol; 1993 Aug; 122(3):703-12. PubMed ID: 8393014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of matrix vesicles and their role in the calcification of epiphyseal cartilage.
    Ali SY
    Fed Proc; 1976 Feb; 35(2):135-42. PubMed ID: 1248646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cartilage calcification studied by proton nuclear magnetic resonance microscopy.
    Potter K; Leapman RD; Basser PJ; Landis WJ
    J Bone Miner Res; 2002 Apr; 17(4):652-60. PubMed ID: 11918222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alkaline phosphatase and calcification, correlated or not?
    Nijweide PJ; Kawilarang-de Haas EW; Wassenaar AM
    Metab Bone Dis Relat Res; 1981; 3(1):61-6. PubMed ID: 7266367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retinoic acid induces rapid mineralization and expression of mineralization-related genes in chondrocytes.
    Iwamoto M; Shapiro IM; Yagami K; Boskey AL; Leboy PS; Adams SL; Pacifici M
    Exp Cell Res; 1993 Aug; 207(2):413-20. PubMed ID: 8344389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypertrophy and calcification of rabbit permanent chondrocytes in pelleted cultures: synthesis of alkaline phosphatase and 1,25-dihydroxycholecalciferol receptor.
    Iwamoto M; Sato K; Nakashima K; Shimazu A; Kato Y
    Dev Biol; 1989 Dec; 136(2):500-7. PubMed ID: 2555237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.