These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 2466716)

  • 21. Skeletogenesis in insulin-treated chick embryos. II. Histochemical observations, with particular reference to the tibiotarsus.
    Rabinovitch AL; Gibson MA
    Teratology; 1972 Aug; 6(1):51-69. PubMed ID: 4262523
    [No Abstract]   [Full Text] [Related]  

  • 22. Growth cartilage calcification and formation of bone trabeculae are late and dissociated events in the endochondral ossification of Rana catesbeiana.
    Felisbino SL; Carvalho HF
    Cell Tissue Res; 2001 Nov; 306(2):319-23. PubMed ID: 11702243
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biochemical and immunohistochemical evidence that in cartilage an alkaline phosphatase is a Ca2+-binding glycoprotein.
    de Bernard B; Bianco P; Bonucci E; Costantini M; Lunazzi GC; Martinuzzi P; Modricky C; Moro L; Panfili E; Pollesello P
    J Cell Biol; 1986 Oct; 103(4):1615-23. PubMed ID: 3771650
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cellular control of calcium movements in bone. Interrelationships of the bone membrane, parathyroid hormone and alkaline phosphatase.
    Ramp WK
    Clin Orthop Relat Res; 1975; (106):311-22. PubMed ID: 123841
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Calcification of rachitic rat cartilage in vitro by extracellular matrix vesicles.
    Anderson HC; Cecil R; Sajdera SW
    Am J Pathol; 1975 May; 79(2):237-54. PubMed ID: 1146961
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Induction of bone-related proteins, osteocalcin and osteopontin, and their matrix ultrastructural localization with development of chondrocyte hypertrophy in vitro.
    Lian JB; McKee MD; Todd AM; Gerstenfeld LC
    J Cell Biochem; 1993 Jun; 52(2):206-19. PubMed ID: 8366137
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cellular hypertrophy and calcification of embryonal carcinoma-derived chondrogenic cell line ATDC5 in vitro.
    Shukunami C; Ishizeki K; Atsumi T; Ohta Y; Suzuki F; Hiraki Y
    J Bone Miner Res; 1997 Aug; 12(8):1174-88. PubMed ID: 9258747
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 32Pi- and 45Ca-metabolism by matrix vesicle-enriched microsomes prepared from chicken epiphyseal cartilage by isosmotic Percoll density-gradient fractionation.
    Warner GP; Hubbard HL; Lloyd GC; Wuthier RE
    Calcif Tissue Int; 1983 May; 35(3):327-38. PubMed ID: 6871763
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of lipids in calcification of cartilage.
    Boyan BD; Schwartz Z; Swain LD; Khare A
    Anat Rec; 1989 Jun; 224(2):211-9. PubMed ID: 2672885
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vitro stimulation of alkaline phosphatase activity in immature embryonic chick pelvic cartilage by adenosine 3'5'-monophosphate.
    Burch WM; Lebovitz HE
    J Cell Biol; 1982 May; 93(2):338-42. PubMed ID: 6178745
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Retinoic acid is a major regulator of chondrocyte maturation and matrix mineralization.
    Iwamoto M; Yagami K; Shapiro IM; Leboy PS; Adams SL; Pacifici M
    Microsc Res Tech; 1994 Aug; 28(6):483-91. PubMed ID: 7949394
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hypertrophy is not a prerequisite for type X collagen expression or mineralization of chondrocytes derived from cultured chick mandibular ectomesenchyme.
    Ekanayake S; Hall BK
    Int J Dev Biol; 1994 Dec; 38(4):683-94. PubMed ID: 7779689
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phosphotyrosine and phosphoprotein phosphatase activity of alkaline phosphatase in mineralizing cartilage.
    Burch WM; Hamner G; Wuthier RE
    Metabolism; 1985 Feb; 34(2):169-75. PubMed ID: 2982079
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isolation and characterization of osteogenic cells derived from first bone of the embryonic tibia.
    Syftestad GT; Weitzhandler M; Caplan AI
    Dev Biol; 1985 Aug; 110(2):275-83. PubMed ID: 4018399
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The influence of bone and marrow on cartilage hypertrophy and degradation during 30-day serum-free culture of the embryonic chick tibia.
    Cole AA; Luchene LJ; Linsenmayer TF; Schmid TM
    Dev Dyn; 1992 Mar; 193(3):277-85. PubMed ID: 1600246
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chondrogenic differentiation in chick embryo osteoblast cultures.
    Manduca P; Descalzi Cancedda F; Cancedda R
    Eur J Cell Biol; 1992 Apr; 57(2):193-201. PubMed ID: 1511696
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultrastructural localization of alkaline phosphatase activity in the normal and osteochondrotic joint cartilage of growing pigs.
    Ekman S; Rodriguez-Martinez H
    Acta Anat (Basel); 1991; 140(1):26-33. PubMed ID: 2028727
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effects of simulated microgravity on cultured chicken embryonic chondrocytes.
    Zhang X; Li XB; Yang SZ; Li SG; Jiang PD; Lin ZH
    Adv Space Res; 2003; 32(8):1577-83. PubMed ID: 15002413
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cartilage macromolecules and the calcification of cartilage matrix.
    Poole AR; Matsui Y; Hinek A; Lee ER
    Anat Rec; 1989 Jun; 224(2):167-79. PubMed ID: 2672883
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interactive cellular modulation of chondrogenic differentiation in vitro by subpopulations of chick embryonic calvarial cells.
    Wong M; Tuan RS
    Dev Biol; 1995 Jan; 167(1):130-47. PubMed ID: 7851637
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.