BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 24667184)

  • 1. Detecting free radicals in sunscreens exposed to UVA radiation using chemiluminescence.
    Millington KR; Osmond MJ; McCall MJ
    J Photochem Photobiol B; 2014 Apr; 133():27-38. PubMed ID: 24667184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of UVA-induced ROS and sunscreen nanoparticle-generated ROS in human immune cells.
    Shen C; Turney TW; Piva TJ; Feltis BN; Wright PF
    Photochem Photobiol Sci; 2014 May; 13(5):781-8. PubMed ID: 24664431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term exposure to commercially available sunscreens containing nanoparticles of TiO2 and ZnO revealed no biological impact in a hairless mouse model.
    Osmond-McLeod MJ; Oytam Y; Rowe A; Sobhanmanesh F; Greenoak G; Kirby J; McInnes EF; McCall MJ
    Part Fibre Toxicol; 2016 Aug; 13(1):44. PubMed ID: 27534937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sunscreens and their usefulness: have we made any progress in the last two decades?
    Serpone N
    Photochem Photobiol Sci; 2021 Feb; 20(2):189-244. PubMed ID: 33721254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. UVB irradiation-enhanced zinc oxide nanoparticles-induced DNA damage and cell death in mouse skin.
    Pal A; Alam S; Mittal S; Arjaria N; Shankar J; Kumar M; Singh D; Pandey AK; Ansari KM
    Mutat Res Genet Toxicol Environ Mutagen; 2016 Sep; 807():15-24. PubMed ID: 27542711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the UVA protection provided by avobenzone, zinc oxide, and titanium dioxide in broad-spectrum sunscreen products.
    Beasley DG; Meyer TA
    Am J Clin Dermatol; 2010 Dec; 11(6):413-21. PubMed ID: 20806994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sunscreens with low sun protection factor inhibit ultraviolet B and A photoaging in the skin of the hairless albino mouse.
    Harrison JA; Walker SL; Plastow SR; Batt MD; Hawk JL; Young AR
    Photodermatol Photoimmunol Photomed; 1991 Feb; 8(1):12-20. PubMed ID: 1768605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ag
    Abadi PG; Shirazi FH; Joshaghani M; Moghimi HR
    Toxicol In Vitro; 2018 Aug; 50():318-327. PubMed ID: 29499336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sunscreens containing the broad-spectrum UVA absorber, Mexoryl SX, prevent the cutaneous detrimental effects of UV exposure: a review of clinical study results.
    Fourtanier A; Moyal D; Seité S
    Photodermatol Photoimmunol Photomed; 2008 Aug; 24(4):164-74. PubMed ID: 18717957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broad-spectrum sunscreens provide better protection from solar ultraviolet-simulated radiation and natural sunlight-induced immunosuppression in human beings.
    Moyal DD; Fourtanier AM
    J Am Acad Dermatol; 2008 May; 58(5 Suppl 2):S149-54. PubMed ID: 18410801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of nitric oxide and reactive oxygen species production improves the ability of a sunscreen to protect from sunburn, immunosuppression and photocarcinogenesis.
    Russo PA; Halliday GM
    Br J Dermatol; 2006 Aug; 155(2):408-15. PubMed ID: 16882182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring sunscreen protection against solar-simulated radiation-induced structural radical damage to skin using ESR/spin trapping: development of an ex vivo test method.
    Haywood R; Volkov A; Andrady C; Sayer R
    Free Radic Res; 2012 Mar; 46(3):265-75. PubMed ID: 22236285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zinc oxide nanoparticles in modern sunscreens: an analysis of potential exposure and hazard.
    Osmond MJ; McCall MJ
    Nanotoxicology; 2010 Mar; 4(1):15-41. PubMed ID: 20795900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurements of UV-generated free radicals/reactive oxygen species (ROS) in skin.
    Herrling T; Jung K; Fuchs J
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Mar; 63(4):840-5. PubMed ID: 16543118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoprotection in the era of nanotechnology.
    Wang SQ; Tooley IR
    Semin Cutan Med Surg; 2011 Dec; 30(4):210-3. PubMed ID: 22123418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Confinement of Reactive Oxygen Species in an Artificial-Enzyme-Based Hollow Structure To Eliminate Adverse Effects of Photocatalysis on UV Filters.
    Ju E; Dong K; Wang Z; Zhang Y; Cao F; Chen Z; Pu F; Ren J; Qu X
    Chemistry; 2017 Sep; 23(54):13518-13524. PubMed ID: 28741846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of reactive oxygen species in the skin of live mice and rats exposed to UVA light: a research review on chemiluminescence and trials for UVA protection.
    Sakurai H; Yasui H; Yamada Y; Nishimura H; Shigemoto M
    Photochem Photobiol Sci; 2005 Sep; 4(9):715-20. PubMed ID: 16121282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ex vivo evaluation of radical sun protection factor in popular sunscreens with antioxidants.
    Wang SQ; Osterwalder U; Jung K
    J Am Acad Dermatol; 2011 Sep; 65(3):525-530. PubMed ID: 21624700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in ultraviolet absorbance and hence in protective efficacy against lipid peroxidation of organic sunscreens after UVA irradiation.
    Damiani E; Rosati L; Castagna R; Carloni P; Greci L
    J Photochem Photobiol B; 2006 Mar; 82(3):204-13. PubMed ID: 16442301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Safety evaluation of sunscreen formulations containing titanium dioxide and zinc oxide nanoparticles in UVB sunburned skin: an in vitro and in vivo study.
    Monteiro-Riviere NA; Wiench K; Landsiedel R; Schulte S; Inman AO; Riviere JE
    Toxicol Sci; 2011 Sep; 123(1):264-80. PubMed ID: 21642632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.