These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
433 related articles for article (PubMed ID: 24667317)
1. Acidification of apple and orange hosts by Penicillium digitatum and Penicillium expansum. Vilanova L; Viñas I; Torres R; Usall J; Buron-Moles G; Teixidó N Int J Food Microbiol; 2014 May; 178():39-49. PubMed ID: 24667317 [TBL] [Abstract][Full Text] [Related]
2. Use of GFP-tagged strains of Penicillium digitatum and Penicillium expansum to study host-pathogen interactions in oranges and apples. Buron-Moles G; López-Pérez M; González-Candelas L; Viñas I; Teixidó N; Usall J; Torres R Int J Food Microbiol; 2012 Nov; 160(2):162-70. PubMed ID: 23177056 [TBL] [Abstract][Full Text] [Related]
3. Characterizing the proteome and oxi-proteome of apple in response to a host (Penicillium expansum) and a non-host (Penicillium digitatum) pathogen. Buron-Moles G; Wisniewski M; Viñas I; Teixidó N; Usall J; Droby S; Torres R J Proteomics; 2015 Jan; 114():136-51. PubMed ID: 25464364 [TBL] [Abstract][Full Text] [Related]
4. Infection capacities in the orange-pathogen relationship: compatible (Penicillium digitatum) and incompatible (Penicillium expansum) interactions. Vilanova L; Viñas I; Torres R; Usall J; Jauset AM; Teixidó N Food Microbiol; 2012 Feb; 29(1):56-66. PubMed ID: 22029919 [TBL] [Abstract][Full Text] [Related]
5. Relationship Between Host Acidification and Virulence of Penicillium spp. on Apple and Citrus Fruit. Prusky D; McEvoy JL; Saftner R; Conway WS; Jones R Phytopathology; 2004 Jan; 94(1):44-51. PubMed ID: 18943818 [TBL] [Abstract][Full Text] [Related]
6. The infection capacity of P. expansum and P. digitatum on apples and histochemical analysis of host response. Vilanova L; Teixidó N; Torres R; Usall J; Viñas I Int J Food Microbiol; 2012 Jul; 157(3):360-7. PubMed ID: 22727432 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of the activity of the antifungal PgAFP protein and its producer mould against Penicillium spp postharvest pathogens of citrus and pome fruits. Delgado J; Ballester AR; Núñez F; González-Candelas L Food Microbiol; 2019 Dec; 84():103266. PubMed ID: 31421779 [TBL] [Abstract][Full Text] [Related]
8. Penicillium expansum: biology, omics, and management tools for a global postharvest pathogen causing blue mould of pome fruit. Luciano-Rosario D; Keller NP; Jurick WM Mol Plant Pathol; 2020 Nov; 21(11):1391-1404. PubMed ID: 32969130 [TBL] [Abstract][Full Text] [Related]
10. Fungal and host transcriptome analysis of pH-regulated genes during colonization of apple fruits by Penicillium expansum. Barad S; Sela N; Kumar D; Kumar-Dubey A; Glam-Matana N; Sherman A; Prusky D BMC Genomics; 2016 May; 17():330. PubMed ID: 27146851 [TBL] [Abstract][Full Text] [Related]
11. Potential of a new strain of Bacillus amyloliquefaciens BUZ-14 as a biocontrol agent of postharvest fruit diseases. Calvo H; Marco P; Blanco D; Oria R; Venturini ME Food Microbiol; 2017 May; 63():101-110. PubMed ID: 28040156 [TBL] [Abstract][Full Text] [Related]
12. Penicillium digitatum Suppresses Production of Hydrogen Peroxide in Host Tissue During Infection of Citrus Fruit. Macarisin D; Cohen L; Eick A; Rafael G; Belausov E; Wisniewski M; Droby S Phytopathology; 2007 Nov; 97(11):1491-500. PubMed ID: 18943520 [TBL] [Abstract][Full Text] [Related]
13. Efficacy of killer yeasts in the biological control of Penicillium digitatum on Tarocco orange fruits (Citrus sinensis). Platania C; Restuccia C; Muccilli S; Cirvilleri G Food Microbiol; 2012 May; 30(1):219-25. PubMed ID: 22265304 [TBL] [Abstract][Full Text] [Related]
14. Impact of Postharvest Storage on the Infection and Colonization of Louw JP; Korsten L Plant Dis; 2019 Jul; 103(7):1584-1594. PubMed ID: 31025905 [TBL] [Abstract][Full Text] [Related]
15. Multiple transcriptomic analyses and characterization of pathogen-related core effectors and LysM family members reveal their differential roles in fungal growth and pathogenicity in Penicillium expansum. Chen D; Li G; Liu J; Wisniewski M; Droby S; Levin E; Huang S; Liu Y Mol Genet Genomics; 2020 Nov; 295(6):1415-1429. PubMed ID: 32656702 [TBL] [Abstract][Full Text] [Related]
16. A Penicillium expansum glucose oxidase-encoding gene, GOX2, is essential for gluconic acid production and acidification during colonization of deciduous fruit. Barad S; Horowitz SB; Moscovitz O; Lichter A; Sherman A; Prusky D Mol Plant Microbe Interact; 2012 Jun; 25(6):779-88. PubMed ID: 22352719 [TBL] [Abstract][Full Text] [Related]
17. Relevance of the transcription factor PdSte12 in Penicillium digitatum conidiation and virulence during citrus fruit infection. Vilanova L; Teixidó N; Torres R; Usall J; Viñas I; Sánchez-Torres P Int J Food Microbiol; 2016 Oct; 235():93-102. PubMed ID: 27479695 [TBL] [Abstract][Full Text] [Related]
18. Unravelling the contribution of the Penicillium expansum PeSte12 transcription factor to virulence during apple fruit infection. Sánchez-Torres P; Vilanova L; Ballester AR; López-Pérez M; Teixidó N; Viñas I; Usall J; González-Candelas L; Torres R Food Microbiol; 2018 Feb; 69():123-135. PubMed ID: 28941893 [TBL] [Abstract][Full Text] [Related]
19. Ammonia activates pacC and patulin accumulation in an acidic environment during apple colonization by Penicillium expansum. Barad S; Espeso EA; Sherman A; Prusky D Mol Plant Pathol; 2016 Jun; 17(5):727-40. PubMed ID: 26420024 [TBL] [Abstract][Full Text] [Related]
20. Biocontrol ability and action mechanisms of Aureobasidium pullulans GE17 and Meyerozyma guilliermondii KL3 against Penicillium digitatum DSM2750 and Penicillium expansum DSM62841 causing postharvest diseases. Agirman B; Erten H Yeast; 2020 Sep; 37(9-10):437-448. PubMed ID: 32452099 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]