These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
313 related articles for article (PubMed ID: 24667827)
1. On the road towards electroactive covalent organic frameworks. Dogru M; Bein T Chem Commun (Camb); 2014 May; 50(42):5531-46. PubMed ID: 24667827 [TBL] [Abstract][Full Text] [Related]
2. Electroactive Organic Building Blocks for the Chemical Design of Functional Porous Frameworks (MOFs and COFs) in Electronics. Souto M; Strutyński K; Melle-Franco M; Rocha J Chemistry; 2020 Aug; 26(48):10912-10935. PubMed ID: 32293769 [TBL] [Abstract][Full Text] [Related]
9. Pore surface engineering of covalent organic frameworks: structural diversity and applications. Vardhan H; Nafady A; Al-Enizi AM; Ma S Nanoscale; 2019 Nov; 11(45):21679-21708. PubMed ID: 31720658 [TBL] [Abstract][Full Text] [Related]
10. Constructing Crystalline Covalent Organic Frameworks from Chiral Building Blocks. Xu HS; Ding SY; An WK; Wu H; Wang W J Am Chem Soc; 2016 Sep; 138(36):11489-92. PubMed ID: 27585120 [TBL] [Abstract][Full Text] [Related]
11. Covalent Organic Frameworks for Chemical and Biological Sensing. Zhang S; Liu D; Wang G Molecules; 2022 Apr; 27(8):. PubMed ID: 35458784 [TBL] [Abstract][Full Text] [Related]
12. Construction of Covalent-Organic Frameworks (COFs) from Amorphous Covalent Organic Polymers via Linkage Replacement. Zhai Y; Liu G; Jin F; Zhang Y; Gong X; Miao Z; Li J; Zhang M; Cui Y; Zhang L; Liu Y; Zhang H; Zhao Y; Zeng Y Angew Chem Int Ed Engl; 2019 Dec; 58(49):17679-17683. PubMed ID: 31583814 [TBL] [Abstract][Full Text] [Related]
13. A homochiral metal-organic porous material for enantioselective separation and catalysis. Seo JS; Whang D; Lee H; Jun SI; Oh J; Jeon YJ; Kim K Nature; 2000 Apr; 404(6781):982-6. PubMed ID: 10801124 [TBL] [Abstract][Full Text] [Related]
14. 3D microporous base-functionalized covalent organic frameworks for size-selective catalysis. Fang Q; Gu S; Zheng J; Zhuang Z; Qiu S; Yan Y Angew Chem Int Ed Engl; 2014 Mar; 53(11):2878-82. PubMed ID: 24604810 [TBL] [Abstract][Full Text] [Related]
15. Systematic Tuning and Multifunctionalization of Covalent Organic Polymers for Enhanced Carbon Capture. Xiang Z; Mercado R; Huck JM; Wang H; Guo Z; Wang W; Cao D; Haranczyk M; Smit B J Am Chem Soc; 2015 Oct; 137(41):13301-7. PubMed ID: 26412410 [TBL] [Abstract][Full Text] [Related]
16. Covalent Organic Frameworks: Emerging Organic Solid Materials for Energy and Electrochemical Applications. Zhang K; Kirlikovali KO; Varma RS; Jin Z; Jang HW; Farha OK; Shokouhimehr M ACS Appl Mater Interfaces; 2020 Jun; 12(25):27821-27852. PubMed ID: 32469503 [TBL] [Abstract][Full Text] [Related]
17. Functional π-Conjugated Two-Dimensional Covalent Organic Frameworks. Babu HV; Bai MGM; Rajeswara Rao M ACS Appl Mater Interfaces; 2019 Mar; 11(12):11029-11060. PubMed ID: 30817118 [TBL] [Abstract][Full Text] [Related]
18. Design Principles for Covalent Organic Frameworks in Energy Storage Applications. Alahakoon SB; Thompson CM; Occhialini G; Smaldone RA ChemSusChem; 2017 May; 10(10):2116-2129. PubMed ID: 28303687 [TBL] [Abstract][Full Text] [Related]
19. Hydrogen-Bonded Organic Frameworks as a Tunable Platform for Functional Materials. Wang B; Lin RB; Zhang Z; Xiang S; Chen B J Am Chem Soc; 2020 Aug; 142(34):14399-14416. PubMed ID: 32786796 [TBL] [Abstract][Full Text] [Related]
20. Intercalation of first row transition metals inside covalent-organic frameworks (COFs): a strategy to fine tune the electronic properties of porous crystalline materials. Pakhira S; Mendoza-Cortes JL Phys Chem Chem Phys; 2019 Apr; 21(17):8785-8796. PubMed ID: 30968866 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]