These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 24668012)

  • 1. Aqueous solvation of HgClOH. Stepwise DFT solvation and Born-Oppenheimer molecular dynamics studies of the HgClOH-(H2O)24 complex.
    Amaro-Estrada JI; Maron L; Ramírez-Solís A
    Phys Chem Chem Phys; 2014 May; 16(18):8455-64. PubMed ID: 24668012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aqueous solvation of Hg(OH)2: energetic and dynamical density functional theory studies of the Hg(OH)2-(H2O)n (n = 1-24) structures.
    Amaro-Estrada JI; Maron L; Ramírez-Solís A
    J Phys Chem A; 2013 Sep; 117(37):9069-75. PubMed ID: 23968503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical study of the solvation of HgCl2, HgClOH, Hg(OH)2 and HgCl3(-): a density functional theory cluster approach.
    Castro L; Dommergue A; Renard A; Ferrari C; Ramirez-Solis A; Maron L
    Phys Chem Chem Phys; 2011 Oct; 13(37):16772-9. PubMed ID: 21860852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aqueous microsolvation of CdCl₂: density functional theory and Born-Oppenheimer molecular dynamics studies.
    Ramírez-Solís A; Maron L
    J Chem Phys; 2014 Sep; 141(9):094304. PubMed ID: 25194369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydration of CH
    Amaro-Estrada JI; Hernández-Cobos J; Saint-Martin H; Maron L; Ramírez-Solís A
    J Chem Phys; 2018 Oct; 149(14):144301. PubMed ID: 30316272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aqueous solvation of Mg(ii) and Ca(ii): A Born-Oppenheimer molecular dynamics study of microhydrated gas phase clusters.
    León-Pimentel CI; Amaro-Estrada JI; Hernández-Cobos J; Saint-Martin H; Ramírez-Solís A
    J Chem Phys; 2018 Apr; 148(14):144307. PubMed ID: 29655339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical study of the formation of mercury (Hg2+) complexes in solution using an explicit solvation shell in implicit solvent calculations.
    Afaneh AT; Schreckenbach G; Wang F
    J Phys Chem B; 2014 Sep; 118(38):11271-83. PubMed ID: 25076413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aqueous Solvation of SmI
    Ramirez-Solis A; Amaro-Estrada JI; Hernández-Cobos J; Maron L
    Inorg Chem; 2018 Mar; 57(5):2843-2850. PubMed ID: 29424528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct contact versus solvent-shared ion pairs in saturated NiCl2 aqueous solution: a DFT, CPMD, and EXAFS investigation.
    Xia FF; Zeng D; Yi HB; Fang C
    J Phys Chem A; 2013 Sep; 117(35):8468-76. PubMed ID: 23909826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Speciation of the curium(III) ion in aqueous solution: a combined study by quantum chemistry and molecular dynamics simulation.
    Yang T; Bursten BE
    Inorg Chem; 2006 Jul; 45(14):5291-301. PubMed ID: 16813391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aqueous Solvation of SmI
    Ramı Rez-Solı S A; Amaro-Estrada JI; Hernández-Cobos J; Maron L
    J Phys Chem A; 2017 Mar; 121(11):2293-2297. PubMed ID: 28266856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting the energy of the water exchange reaction and free energy of solvation for the uranyl ion in aqueous solution.
    Gutowski KE; Dixon DA
    J Phys Chem A; 2006 Jul; 110(28):8840-56. PubMed ID: 16836448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydration and speciation studies of Mn2+ in aqueous solution with simple monovalent anions (ClO4-, NO3-, Cl-, Br-).
    Rudolph WW; Irmer G
    Dalton Trans; 2013 Oct; 42(40):14460-72. PubMed ID: 23969599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accuracy of the microsolvation-continuum approach in computing the pK(a) and the free energies of formation of phosphate species in aqueous solution.
    Tang E; Di Tommaso D; de Leeuw NH
    Phys Chem Chem Phys; 2010 Nov; 12(41):13804-15. PubMed ID: 20862433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Explaining Asymmetric Solvation of Pt(II) versus Pd(II) in Aqueous Solution Revealed by Ab Initio Molecular Dynamics Simulations.
    Beret EC; Martínez JM; Pappalardo RR; Marcos ES; Doltsinis NL; Marx D
    J Chem Theory Comput; 2008 Dec; 4(12):2108-21. PubMed ID: 26620482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Density functional theory-based prediction of the formation constants of complexes of ammonia in aqueous solution: indications of the role of relativistic effects in the solution chemistry of gold(I).
    Hancock RD; Bartolotti LJ
    Inorg Chem; 2005 Oct; 44(20):7175-83. PubMed ID: 16180881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The onset of calcium carbonate nucleation: a density functional theory molecular dynamics and hybrid microsolvation/continuum study.
    Di Tommaso D; de Leeuw NH
    J Phys Chem B; 2008 Jun; 112(23):6965-75. PubMed ID: 18476732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of the Elusive Hydration of Pb
    León-Pimentel CI; Martínez-Jiménez M; Saint-Martin H
    J Phys Chem B; 2019 Oct; 123(43):9155-9166. PubMed ID: 31584817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of the pKa's of aqueous metal ion +2 complexes.
    Jackson VE; Felmy AR; Dixon DA
    J Phys Chem A; 2015 Mar; 119(12):2926-39. PubMed ID: 25721568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-Dimensional Reference Interaction Site Model Self-Consistent Field Study on the Coordination Structure and Excitation Spectra of Cu(II)-Water Complexes in Aqueous Solution.
    Yang C; Watanabe Y; Yoshida N; Nakano H
    J Phys Chem A; 2019 Apr; 123(15):3344-3354. PubMed ID: 30896166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.