BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 24668170)

  • 1. A high-resolution morphological and ultrastructural map of anterior sensory cilia and glia in Caenorhabditis elegans.
    Doroquez DB; Berciu C; Anderson JR; Sengupta P; Nicastro D
    Elife; 2014 Mar; 3():e01948. PubMed ID: 24668170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tomography gives a new dimension to an ancient organelle.
    Silva M; Barr MM
    Elife; 2014 Mar; 3():e02589. PubMed ID: 24668175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrastructural analysis of Caenorhabditis elegans cilia.
    Serwas D; Dammermann A
    Methods Cell Biol; 2015; 129():341-367. PubMed ID: 26175447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Image analysis of Caenorhabditis elegans ciliary transition zone structure, ultrastructure, molecular composition, and function.
    Sanders AA; Kennedy J; Blacque OE
    Methods Cell Biol; 2015; 127():323-47. PubMed ID: 25837399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Centriolar remodeling underlies basal body maturation during ciliogenesis in
    Nechipurenko IV; Berciu C; Sengupta P; Nicastro D
    Elife; 2017 Apr; 6():. PubMed ID: 28411364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Centrioles initiate cilia assembly but are dispensable for maturation and maintenance in
    Serwas D; Su TY; Roessler M; Wang S; Dammermann A
    J Cell Biol; 2017 Jun; 216(6):1659-1671. PubMed ID: 28411189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific alpha- and beta-tubulin isotypes optimize the functions of sensory Cilia in Caenorhabditis elegans.
    Hurd DD; Miller RM; Núñez L; Portman DS
    Genetics; 2010 Jul; 185(3):883-96. PubMed ID: 20421600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional fine structural reconstruction of the nose sensory structures of Acrobeles complexus compared to Caenorhabditis elegans (Nematoda: Rhabditida).
    Bumbarger DJ; Crum J; Ellisman MH; Baldwin JG
    J Morphol; 2007 Aug; 268(8):649-63. PubMed ID: 17514723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural diversity in a stereotypic organelle - Sensory cilia of Caenorhabditis elegans.
    Maurya AK
    J Cell Physiol; 2022 Jun; 237(6):2668-2672. PubMed ID: 35686462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Primary Cilium Formation and Ciliary Protein Trafficking Is Regulated by the Atypical MAP Kinase MAPK15 in
    Kazatskaya A; Kuhns S; Lambacher NJ; Kennedy JE; Brear AG; McManus GJ; Sengupta P; Blacque OE
    Genetics; 2017 Dec; 207(4):1423-1440. PubMed ID: 29021280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kymographic Analysis of Transport in an Individual Neuronal Sensory Cilium in Caenorhabditis elegans.
    O'Hagan R; Barr MM
    Methods Mol Biol; 2016; 1454():107-22. PubMed ID: 27514919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional modulation of IFT kinesins extends the sensory repertoire of ciliated neurons in Caenorhabditis elegans.
    Evans JE; Snow JJ; Gunnarson AL; Ou G; Stahlberg H; McDonald KL; Scholey JM
    J Cell Biol; 2006 Feb; 172(5):663-9. PubMed ID: 16492809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications of emerging transmission electron microscopy technology in PCD research and diagnosis.
    Shoemark A
    Ultrastruct Pathol; 2017; 41(6):408-414. PubMed ID: 28922052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diverse cell type-specific mechanisms localize G protein-coupled receptors to Caenorhabditis elegans sensory cilia.
    Brear AG; Yoon J; Wojtyniak M; Sengupta P
    Genetics; 2014 Jun; 197(2):667-84. PubMed ID: 24646679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ectocytosis prevents accumulation of ciliary cargo in
    Razzauti A; Laurent P
    Elife; 2021 Sep; 10():. PubMed ID: 34533135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell type-specific structural plasticity of the ciliary transition zone in C. elegans.
    Akella JS; Silva M; Morsci NS; Nguyen KC; Rice WJ; Hall DH; Barr MM
    Biol Cell; 2019 Apr; 111(4):95-107. PubMed ID: 30681171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-Specific α-Tubulin Isotype Regulates Ciliary Microtubule Ultrastructure, Intraflagellar Transport, and Extracellular Vesicle Biology.
    Silva M; Morsci N; Nguyen KCQ; Rizvi A; Rongo C; Hall DH; Barr MM
    Curr Biol; 2017 Apr; 27(7):968-980. PubMed ID: 28318980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of intraflagellar transport in C. elegans sensory cilia.
    Hao L; Acar S; Evans J; Ou G; Scholey JM
    Methods Cell Biol; 2009; 93():235-66. PubMed ID: 20409821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution and structural diversity of cilia in tadpole larvae of the ascidian Ciona intestinalis.
    Konno A; Kaizu M; Hotta K; Horie T; Sasakura Y; Ikeo K; Inaba K
    Dev Biol; 2010 Jan; 337(1):42-62. PubMed ID: 19835854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transmembrane protein OSTA-1 shapes sensory cilia morphology via regulation of intracellular membrane trafficking in C. elegans.
    Olivier-Mason A; Wojtyniak M; Bowie RV; Nechipurenko IV; Blacque OE; Sengupta P
    Development; 2013 Apr; 140(7):1560-72. PubMed ID: 23482491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.