BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 24668223)

  • 1. Use of thiolated oligonucleotides as anti-fouling diluents in electrochemical peptide-based sensors.
    McQuistan A; Zaitouna AJ; Echeverria E; Lai RY
    Chem Commun (Camb); 2014 May; 50(36):4690-2. PubMed ID: 24668223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of an oligonucleotide-incorporated nonfouling surface and its application in electrochemical DNA sensors for highly sensitive and sequence-specific detection of target DNA.
    Zhang J; Lao R; Song S; Yan Z; Fan C
    Anal Chem; 2008 Dec; 80(23):9029-33. PubMed ID: 19551931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the signaling and stability of electrochemical DNA sensors fabricated from 6- or 11-carbon self-assembled monolayers.
    Lai RY; Seferos DS; Heeger AJ; Bazan GC; Plaxco KW
    Langmuir; 2006 Dec; 22(25):10796-800. PubMed ID: 17129062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Mannose, Ethylene Glycol, and Methoxy-Terminated Diluents on Specificity and Selectivity of Electrochemical Peptide-Based Sensors.
    Zaitouna AJ; Joyce J; Cerny RL; Dussault PH; Lai RY
    Anal Chem; 2015 Jul; 87(13):6966-73. PubMed ID: 26057465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporation of extra amino acids in peptide recognition probe to improve specificity and selectivity of an electrochemical peptide-based sensor.
    Zaitouna AJ; Maben AJ; Lai RY
    Anal Chim Acta; 2015 Jul; 886():157-64. PubMed ID: 26320648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-free and reagentless electrochemical detection of PCR fragments using self-assembled quinone derivative monolayer: application to Mycobacterium tuberculosis.
    Zhang QD; March G; Noel V; Piro B; Reisberg S; Tran LD; Hai LV; Abadia E; Nielsen PE; Sola C; Pham MC
    Biosens Bioelectron; 2012 Feb; 32(1):163-8. PubMed ID: 22186165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An electrochemical peptide-based Ara h 2 antibody sensor fabricated on a nickel(II)-nitriloacetic acid self-assembled monolayer using a His-tagged peptide.
    Zaitouna AJ; Lai RY
    Anal Chim Acta; 2014 May; 828():85-91. PubMed ID: 24845819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Greatly extended storage stability of electrochemical DNA biosensors using ternary thiolated self-assembled monolayers.
    Kuralay F; Campuzano S; Wang J
    Talanta; 2012 Sep; 99():155-60. PubMed ID: 22967535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aptamer-based electrochemical sensors that are not based on the target binding-induced conformational change of aptamers.
    Lu Y; Zhu N; Yu P; Mao L
    Analyst; 2008 Sep; 133(9):1256-60. PubMed ID: 18709204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review: Carbon nanotube based electrochemical sensors for biomolecules.
    Jacobs CB; Peairs MJ; Venton BJ
    Anal Chim Acta; 2010 Mar; 662(2):105-27. PubMed ID: 20171310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An electrochemical peptide-based biosensing platform for HIV detection.
    Gerasimov JY; Lai RY
    Chem Commun (Camb); 2010 Jan; 46(3):395-7. PubMed ID: 20066303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of diluent chain length on the performance of the electrochemical DNA sensor at elevated temperature.
    Yang W; Lai RY
    Analyst; 2011 Jan; 136(1):134-9. PubMed ID: 20927441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical DNA sensors.
    Drummond TG; Hill MG; Barton JK
    Nat Biotechnol; 2003 Oct; 21(10):1192-9. PubMed ID: 14520405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving the stability and sensing of electrochemical biosensors by employing trithiol-anchoring groups in a six-carbon self-assembled monolayer.
    Phares N; White RJ; Plaxco KW
    Anal Chem; 2009 Feb; 81(3):1095-100. PubMed ID: 19133790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple and label-free electrochemical biosensor for DNA detection based on the super-sandwich assay.
    Zhou LY; Zhang XY; Wang GL; Jiao XX; Luo HQ; Li NB
    Analyst; 2012 Nov; 137(21):5071-5. PubMed ID: 23001115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence-specific DNA detection by using biocatalyzed electrochemiluminescence and non-fouling surfaces.
    Zhang L; Li D; Meng W; Huang Q; Su Y; Wang L; Song S; Fan C
    Biosens Bioelectron; 2009 Oct; 25(2):368-72. PubMed ID: 19674889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct electrochemical sensor for fast reagent-free DNA detection.
    Komarova E; Aldissi M; Bogomolova A
    Biosens Bioelectron; 2005 Jul; 21(1):182-9. PubMed ID: 15967367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of mass fabricated silicon-based gold transducers for amperometric biosensors.
    Ziółkowski R; Górski Ł; Zaborowski M; Malinowska E
    Bioelectrochemistry; 2010 Nov; 80(1):31-7. PubMed ID: 20435527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tetrahedron-structured DNA and functional oligonucleotide for construction of an electrochemical DNA-based biosensor.
    Bu NN; Tang CX; He XW; Yin XB
    Chem Commun (Camb); 2011 Jul; 47(27):7689-91. PubMed ID: 21660362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double-tagging polymerase chain reaction with a thiolated primer and electrochemical genosensing based on gold nanocomposite sensor for food safety.
    Marques PR; Lermo A; Campoy S; Yamanaka H; Barbé J; Alegret S; Pividori MI
    Anal Chem; 2009 Feb; 81(4):1332-9. PubMed ID: 19170528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.