These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 24668439)

  • 1. Microfluidic platform for negative enrichment of circulating tumor cells.
    Sajay BN; Chang CP; Ahmad H; Khuntontong P; Wong CC; Wang Z; Puiu PD; Soo R; Rahman AR
    Biomed Microdevices; 2014 Aug; 16(4):537-48. PubMed ID: 24668439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrated on-chip platform for negative enrichment of tumour cells.
    Bhuvanendran Nair Gourikutty S; Chang CP; Poenar DP
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Aug; 1028():153-164. PubMed ID: 27344255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enrichment of cancer cells from whole blood using a microfabricated porous filter.
    Kim EH; Lee JK; Kim BC; Rhim SH; Kim JW; Kim KH; Jung SM; Park PS; Park HC; Lee J; Jeon BH
    Anal Biochem; 2013 Sep; 440(1):114-6. PubMed ID: 23747280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards an optimal and unbiased approach for tumor cell isolation.
    Sajay BNG; Chang CP; Ahmad H; Chung WC; Puiu PD; Rahman ARA
    Biomed Microdevices; 2013 Aug; 15(4):699-709. PubMed ID: 23504045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Negative Enrichment of Circulating Tumor Cells in Blood Using a Microfluidic Chip.
    Cognart HA; Chang CP
    Methods Mol Biol; 2017; 1547():167-174. PubMed ID: 28044295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SSA-MOA: a novel CTC isolation platform using selective size amplification (SSA) and a multi-obstacle architecture (MOA) filter.
    Kim MS; Sim TS; Kim YJ; Kim SS; Jeong H; Park JM; Moon HS; Kim SI; Gurel O; Lee SS; Lee JG; Park JC
    Lab Chip; 2012 Aug; 12(16):2874-80. PubMed ID: 22684249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic Immiscible Phase Filtration System for the Isolation of Small Numbers of Cells from Whole Blood.
    Pirozzi I; Snider A; Kraus M; Schönbrunner ER; Tripathi A
    Cytometry A; 2019 Aug; 95(8):885-897. PubMed ID: 30852843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microsieve lab-chip device for rapid enumeration and fluorescence in situ hybridization of circulating tumor cells.
    Lim LS; Hu M; Huang MC; Cheong WC; Gan AT; Looi XL; Leong SM; Koay ES; Li MH
    Lab Chip; 2012 Nov; 12(21):4388-96. PubMed ID: 22930096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enrichment and enumeration of circulating tumor cells by efficient depletion of leukocyte fractions.
    Wu S; Liu Z; Liu S; Lin L; Yang W; Xu J
    Clin Chem Lab Med; 2014 Feb; 52(2):243-51. PubMed ID: 24021598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High throughput capture of circulating tumor cells using an integrated microfluidic system.
    Liu Z; Zhang W; Huang F; Feng H; Shu W; Xu X; Chen Y
    Biosens Bioelectron; 2013 Sep; 47():113-9. PubMed ID: 23567630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analytical Validation of a Spiral Microfluidic Chip with Hydrofoil-Shaped Pillars for the Enrichment of Circulating Tumor Cells.
    Sen-Dogan B; Demir MA; Sahin B; Yildirim E; Karayalcin G; Sahin S; Mutlu E; Toral TB; Ozgur E; Zorlu O; Kulah H
    Biosensors (Basel); 2023 Oct; 13(10):. PubMed ID: 37887131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic inertia enhanced phase partitioning for enriching nucleated cell populations in blood.
    Parichehreh V; Medepallai K; Babbarwal K; Sethu P
    Lab Chip; 2013 Mar; 13(5):892-900. PubMed ID: 23307172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. All-in-one centrifugal microfluidic device for size-selective circulating tumor cell isolation with high purity.
    Lee A; Park J; Lim M; Sunkara V; Kim SY; Kim GH; Kim MH; Cho YK
    Anal Chem; 2014 Nov; 86(22):11349-56. PubMed ID: 25317565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation.
    Bhagat AA; Hou HW; Li LD; Lim CT; Han J
    Lab Chip; 2011 Jun; 11(11):1870-8. PubMed ID: 21505682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-Cell Isolation of Circulating Tumor Cells from Whole Blood by Lateral Magnetophoretic Microseparation and Microfluidic Dispensing.
    Kim J; Cho H; Han SI; Han KH
    Anal Chem; 2016 May; 88(9):4857-63. PubMed ID: 27093098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient microfluidic negative enrichment of circulating tumor cells in blood using roughened PDMS.
    Diéguez L; Winter MA; Pocock KJ; Bremmell KE; Thierry B
    Analyst; 2015 May; 140(10):3565-72. PubMed ID: 25853462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enumeration, characterization, and collection of intact circulating tumor cells by cross contamination-free flow cytometry.
    Takao M; Takeda K
    Cytometry A; 2011 Feb; 79(2):107-17. PubMed ID: 21246706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustofluidic, label-free separation and simultaneous concentration of rare tumor cells from white blood cells.
    Antfolk M; Magnusson C; Augustsson P; Lilja H; Laurell T
    Anal Chem; 2015 Sep; 87(18):9322-8. PubMed ID: 26309066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Label-free cancer cell separation from human whole blood using inertial microfluidics at low shear stress.
    Lee MG; Shin JH; Bae CY; Choi S; Park JK
    Anal Chem; 2013 Jul; 85(13):6213-8. PubMed ID: 23724953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly sensitive enumeration of circulating tumor cells in lung cancer patients using a size-based filtration microfluidic chip.
    Huang T; Jia CP; Jun-Yang ; Sun WJ; Wang WT; Zhang HL; Cong H; Jing FX; Mao HJ; Jin QH; Zhang Z; Chen YJ; Li G; Mao GX; Zhao JL
    Biosens Bioelectron; 2014 Jan; 51():213-8. PubMed ID: 23962709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.