These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 2466856)

  • 21. Diversity and regulation of amiloride-sensitive Na+ channels.
    Benos DJ; Awayda MS; Berdiev BK; Bradford AL; Fuller CM; Senyk O; Ismailov II
    Kidney Int; 1996 Jun; 49(6):1632-7. PubMed ID: 8743467
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular properties of epithelial, amiloride-blockable Na+ channels.
    Garty H
    FASEB J; 1994 May; 8(8):522-8. PubMed ID: 8181670
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Amiloride and its analogs as tools in the study of ion transport.
    Kleyman TR; Cragoe EJ
    J Membr Biol; 1988 Oct; 105(1):1-21. PubMed ID: 2852254
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Epithelial Na channels and short-term renal response to salt deprivation.
    Frindt G; McNair T; Dahlmann A; Jacobs-Palmer E; Palmer LG
    Am J Physiol Renal Physiol; 2002 Oct; 283(4):F717-26. PubMed ID: 12217863
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The epithelial sodium channel in hypertension: genetic heterogeneity and implications for treatment with amiloride.
    Swift PA; MacGregor GA
    Am J Pharmacogenomics; 2004; 4(3):161-8. PubMed ID: 15174897
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fetal lung epithelial cells contain two populations of amiloride-sensitive Na+ channels.
    Matalon S; Bauer ML; Benos DJ; Kleyman TR; Lin C; Cragoe EJ; O'Brodovich H
    Am J Physiol; 1993 Apr; 264(4 Pt 1):L357-64. PubMed ID: 8386466
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A reappraisal of aldosterone effects on the kidney: new insights provided by epithelial sodium channel cloning.
    GrĂ¼nder S; Rossier BC
    Curr Opin Nephrol Hypertens; 1997 Jan; 6(1):35-9. PubMed ID: 9051352
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of voltage and extracellular Na(+) on amiloride block and transport kinetics of rat epithelial Na(+) channel expressed in Xenopus oocytes.
    Segal A; Awayda MS; Eggermont J; Van Driessche W; Weber WM
    Pflugers Arch; 2002 Mar; 443(5-6):882-91. PubMed ID: 11889589
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The amiloride-sensitive epithelial Na+ channel: binding sites and channel densities.
    Blazer-Yost BL; Helman SI
    Am J Physiol; 1997 Mar; 272(3 Pt 1):C761-9. PubMed ID: 9124509
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential effects of aldosterone and vasopressin on chloride fluxes in transimmortalized mouse cortical collecting duct cells.
    Duong Van Huyen J; Bens M; Vandewalle A
    J Membr Biol; 1998 Jul; 164(1):79-90. PubMed ID: 9636246
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of vasopressin and aldosterone on the lateral mobility of epithelial Na+ channels in A6 renal epithelial cells.
    Smith PR; Stoner LC; Viggiano SC; Angelides KJ; Benos DJ
    J Membr Biol; 1995 Sep; 147(2):195-205. PubMed ID: 8568855
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Time-dependent regulation by aldosterone of the amiloride-sensitive Na+ channel in rabbit kidney.
    Dijkink L; Hartog A; Deen PM; van Os CH; Bindels RJ
    Pflugers Arch; 1999 Aug; 438(3):354-60. PubMed ID: 10398866
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cyclic nucleotide-gated cation channels mediate sodium absorption by IMCD (mIMCD-K2) cells.
    Vandorpe DH; Ciampolillo F; Green RB; Stanton BA
    Am J Physiol; 1997 Mar; 272(3 Pt 1):C901-10. PubMed ID: 9124526
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Primary structure of an apical protein from Xenopus laevis that participates in amiloride-sensitive sodium channel activity.
    Staub O; Verrey F; Kleyman TR; Benos DJ; Rossier BC; Kraehenbuhl JP
    J Cell Biol; 1992 Dec; 119(6):1497-506. PubMed ID: 1334959
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Urinary proteases degrade epithelial sodium channels.
    Lewis SA; Clausen C
    J Membr Biol; 1991 May; 122(1):77-88. PubMed ID: 1652031
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent advances in the characterization of epithelial ionic channels.
    Wills NK; Zweifach A
    Biochim Biophys Acta; 1987 Apr; 906(1):1-31. PubMed ID: 2436665
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cytoskeletal disruption in A6 kidney cells: impact on endo/exocytosis and NaCl transport regulation by antidiuretic hormone.
    Verrey F; Groscurth P; Bolliger U
    J Membr Biol; 1995 May; 145(2):193-204. PubMed ID: 7563021
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proton currents through amiloride-sensitive Na+ channels in isolated hamster taste cells: enhancement by vasopressin and cAMP.
    Gilbertson TA; Roper SD; Kinnamon SC
    Neuron; 1993 May; 10(5):931-42. PubMed ID: 8388226
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vasopressin and protein kinase A activate G protein-sensitive epithelial Na+ channels.
    Prat AG; Ausiello DA; Cantiello HF
    Am J Physiol; 1993 Jul; 265(1 Pt 1):C218-23. PubMed ID: 8393279
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ionic channels in epithelial cell membranes.
    Van Driessche W; Zeiske W
    Physiol Rev; 1985 Oct; 65(4):833-903. PubMed ID: 2414790
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.