These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 24668799)
1. Fatty acid synthase is required for mammary gland development and milk production during lactation. Suburu J; Shi L; Wu J; Wang S; Samuel M; Thomas MJ; Kock ND; Yang G; Kridel S; Chen YQ Am J Physiol Endocrinol Metab; 2014 May; 306(10):E1132-43. PubMed ID: 24668799 [TBL] [Abstract][Full Text] [Related]
2. Thyroid hormone responsive protein Spot14 enhances catalysis of fatty acid synthase in lactating mammary epithelium. Rudolph MC; Wellberg EA; Lewis AS; Terrell KL; Merz AL; Maluf NK; Serkova NJ; Anderson SM J Lipid Res; 2014 Jun; 55(6):1052-65. PubMed ID: 24771867 [TBL] [Abstract][Full Text] [Related]
3. Fatty acid synthase promoter: characterization, and transcriptional regulation by sterol regulatory element binding protein-1 in goat mammary epithelial cells. Li J; Luo J; Xu H; Wang M; Zhu J; Shi H; Haile AB; Wang H; Sun Y Gene; 2015 Apr; 561(1):157-64. PubMed ID: 25688876 [TBL] [Abstract][Full Text] [Related]
4. The effects of cell death-inducing DNA fragmentation factor-α-like effector C (CIDEC) on milk lipid synthesis in mammary glands of dairy cows. Yang Y; Lin Y; Duan X; Lv H; Xing W; Li Q; Gao X; Hou X J Dairy Sci; 2017 May; 100(5):4014-4024. PubMed ID: 28284693 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of FASN reduces the synthesis of medium-chain fatty acids in goat mammary gland. Zhu JJ; Luo J; Wang W; Yu K; Wang HB; Shi HB; Sun YT; Lin XZ; Li J Animal; 2014 Sep; 8(9):1469-78. PubMed ID: 24909980 [TBL] [Abstract][Full Text] [Related]
6. Sterol regulatory element binding protein and dietary lipid regulation of fatty acid synthesis in the mammary epithelium. Rudolph MC; Monks J; Burns V; Phistry M; Marians R; Foote MR; Bauman DE; Anderson SM; Neville MC Am J Physiol Endocrinol Metab; 2010 Dec; 299(6):E918-27. PubMed ID: 20739508 [TBL] [Abstract][Full Text] [Related]
8. Gene networks driving bovine milk fat synthesis during the lactation cycle. Bionaz M; Loor JJ BMC Genomics; 2008 Jul; 9():366. PubMed ID: 18671863 [TBL] [Abstract][Full Text] [Related]
9. Maternal obesity reduces milk lipid production in lactating mice by inhibiting acetyl-CoA carboxylase and impairing fatty acid synthesis. Saben JL; Bales ES; Jackman MR; Orlicky D; MacLean PS; McManaman JL PLoS One; 2014; 9(5):e98066. PubMed ID: 24849657 [TBL] [Abstract][Full Text] [Related]
10. A commonly used rumen-protected conjugated linoleic acid supplement marginally affects fatty acid distribution of body tissues and gene expression of mammary gland in heifers during early lactation. Kramer R; Wolf S; Petri T; von Soosten D; Dänicke S; Weber EM; Zimmer R; Rehage J; Jahreis G Lipids Health Dis; 2013 Jul; 12():96. PubMed ID: 23827056 [TBL] [Abstract][Full Text] [Related]
11. Effects of different model diets on milk composition and expression of genes related to fatty acid synthesis in the mammary gland of lactating dairy goats. Zhang H; Ao CJ; Khas-Erdene ; Song LW; Zhang XF J Dairy Sci; 2015 Jul; 98(7):4619-28. PubMed ID: 25981073 [TBL] [Abstract][Full Text] [Related]
12. Effects of polyunsaturated fatty acids from plant oils and algae on milk fat yield and composition are associated with mammary lipogenic and SREBF1 gene expression. Angulo J; Mahecha L; Nuernberg K; Nuernberg G; Dannenberger D; Olivera M; Boutinaud M; Leroux C; Albrecht E; Bernard L Animal; 2012 Dec; 6(12):1961-72. PubMed ID: 22717104 [TBL] [Abstract][Full Text] [Related]
13. Liver X receptor α promotes milk fat synthesis in buffalo mammary epithelial cells by regulating the expression of FASN. Zhang Y; Fan X; Qiu L; Zhu W; Huang L; Miao Y J Dairy Sci; 2021 Dec; 104(12):12980-12993. PubMed ID: 34593221 [TBL] [Abstract][Full Text] [Related]
14. Cell death-inducing DNA fragmentation factor-α-like effector C (CIDEC) regulates acetate- and β-hydroxybutyrate-induced milk fat synthesis by increasing FASN expression in mammary epithelial cells of dairy cows. Lv H; Meng Q; Wang N; Duan X; Hou X; Lin Y J Dairy Sci; 2021 May; 104(5):6212-6221. PubMed ID: 33663853 [TBL] [Abstract][Full Text] [Related]
15. Expression of constitutively activated Akt in the mammary gland leads to excess lipid synthesis during pregnancy and lactation. Schwertfeger KL; McManaman JL; Palmer CA; Neville MC; Anderson SM J Lipid Res; 2003 Jun; 44(6):1100-12. PubMed ID: 12700340 [TBL] [Abstract][Full Text] [Related]
17. Mammary-specific ablation of the calcium-sensing receptor during lactation alters maternal calcium metabolism, milk calcium transport, and neonatal calcium accrual. Mamillapalli R; VanHouten J; Dann P; Bikle D; Chang W; Brown E; Wysolmerski J Endocrinology; 2013 Sep; 154(9):3031-42. PubMed ID: 23782944 [TBL] [Abstract][Full Text] [Related]
18. Conjugated linoleic acid-induced milk fat reduction associated with depressed expression of lipogenic genes in lactating Holstein mammary glands. Han LQ; Pang K; Li HJ; Zhu SB; Wang LF; Wang YB; Yang GQ; Yang GY Genet Mol Res; 2012 Sep; 11(4):4754-64. PubMed ID: 23079976 [TBL] [Abstract][Full Text] [Related]
19. Essential Role for Zinc Transporter 2 (ZnT2)-mediated Zinc Transport in Mammary Gland Development and Function during Lactation. Lee S; Hennigar SR; Alam S; Nishida K; Kelleher SL J Biol Chem; 2015 May; 290(21):13064-78. PubMed ID: 25851903 [TBL] [Abstract][Full Text] [Related]
20. Normal mammary gland growth and lactation capacity in pregnant relaxin-deficient mice. Parry LJ; Vodstrcil LA; Madden A; Amir SH; Baldwin K; Wlodek ME; Nicholas KR Reprod Fertil Dev; 2009; 21(4):549-60. PubMed ID: 19383261 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]