BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 24668875)

  • 1. A deformable nanoplasmonic membrane reveals universal correlations between plasmon resonance and surface enhanced Raman scattering.
    Kang M; Kim JJ; Oh YJ; Park SG; Jeong KH
    Adv Mater; 2014 Jul; 26(26):4510-4. PubMed ID: 24668875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The plasmonic engineering of metal nanoparticles for enhanced fluorescence and Raman scattering.
    Cade NI; Ritman-Meer T; Kwaka K; Richards D
    Nanotechnology; 2009 Jul; 20(28):285201. PubMed ID: 19546490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Demonstrating photoluminescence from Au is electronic inelastic light scattering of a plasmonic metal: the origin of SERS backgrounds.
    Hugall JT; Baumberg JJ
    Nano Lett; 2015 Apr; 15(4):2600-4. PubMed ID: 25734469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods.
    Hossain MK; Kitahama Y; Huang GG; Han X; Ozaki Y
    Anal Bioanal Chem; 2009 Aug; 394(7):1747-60. PubMed ID: 19384546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tailoring plasmonic substrates for surface enhanced spectroscopies.
    Lal S; Grady NK; Kundu J; Levin CS; Lassiter JB; Halas NJ
    Chem Soc Rev; 2008 May; 37(5):898-911. PubMed ID: 18443675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchical porous plasmonic metamaterials for reproducible ultrasensitive surface-enhanced Raman spectroscopy.
    Zhang X; Zheng Y; Liu X; Lu W; Dai J; Lei DY; MacFarlane DR
    Adv Mater; 2015 Feb; 27(6):1090-6. PubMed ID: 25534763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of electromagnetic enhancement of surface enhanced hyper Raman scattering using plasmonic properties of binary active sites in single Ag nanoaggregates.
    Itoh T; Yoshikawa H; Yoshida K; Biju V; Ishikawa M
    J Chem Phys; 2009 Jun; 130(21):214706. PubMed ID: 19508086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic nanosensors for pharmaceutical and biomedical analysis.
    Akgönüllü S; Denizli A
    J Pharm Biomed Anal; 2023 Nov; 236():115671. PubMed ID: 37659267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stable silver/biopolymer hybrid plasmonic nanostructures for high performance surface enhanced Raman scattering (SERS).
    Sundaram J; Park B; Kwon Y
    J Nanosci Nanotechnol; 2013 Aug; 13(8):5382-90. PubMed ID: 23882767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved Quantitative SERS Enabled by Surface Plasmon Enhanced Elastic Light Scattering.
    Wei H; Leng W; Song J; Willner MR; Marr LC; Zhou W; Vikesland PJ
    Anal Chem; 2018 Mar; 90(5):3227-3237. PubMed ID: 29356519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A SERS-active microfluidic device with tunable surface plasmon resonances.
    Xu BB; Ma ZC; Wang H; Liu XQ; Zhang YL; Zhang XL; Zhang R; Jiang HB; Sun HB
    Electrophoresis; 2011 Nov; 32(23):3378-84. PubMed ID: 22072533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SERS signals at the anti Stokes side of the excitation laser in extremely high local optical fields of silver and gold nanoclusters.
    Kneipp K; Kneipp H
    Faraday Discuss; 2006; 132():27-33; discussion 85-94. PubMed ID: 16833105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localized surface plasmon resonance and surface enhanced Raman scattering responses of Au@Ag core-shell nanorods with different thickness of Ag shell.
    Ma Y; Zhou J; Zou W; Jia Z; Petti L; Mormile P
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4245-50. PubMed ID: 24738378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly controlled surface-enhanced Raman scattering chips using nanoengineered gold blocks.
    Yokota Y; Ueno K; Misawa H
    Small; 2011 Jan; 7(2):252-8. PubMed ID: 21213390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the surface-enhanced Raman scattering properties of Au-Ag nanocages at two different excitation wavelengths.
    Rycenga M; Hou KK; Cobley CM; Schwartz AG; Camargo PH; Xia Y
    Phys Chem Chem Phys; 2009 Jul; 11(28):5903-8. PubMed ID: 19588011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Double resonance surface enhanced Raman scattering substrates: an intuitive coupled oscillator model.
    Chu Y; Wang D; Zhu W; Crozier KB
    Opt Express; 2011 Aug; 19(16):14919-28. PubMed ID: 21934853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering.
    Li ZY; Xia Y
    Nano Lett; 2010 Jan; 10(1):243-9. PubMed ID: 19958019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative SERS using the sequestration of small molecules inside precise plasmonic nanoconstructs.
    Kasera S; Biedermann F; Baumberg JJ; Scherman OA; Mahajan S
    Nano Lett; 2012 Nov; 12(11):5924-8. PubMed ID: 23088754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beamed Raman: directional excitation and emission enhancement in a plasmonic crystal double resonance SERS substrate.
    Chu Y; Zhu W; Wang D; Crozier KB
    Opt Express; 2011 Oct; 19(21):20054-68. PubMed ID: 21997016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.