These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 24668916)
41. Differential toxicity of Bacillus thuringiensis strains and their crystal toxins against high-altitude Himalayan populations of diamondback moth, Plutella xylostella L. Mohan M; Sushil SN; Selvakumar G; Bhatt JC; Gujar GT; Gupta HS Pest Manag Sci; 2009 Jan; 65(1):27-33. PubMed ID: 18785222 [TBL] [Abstract][Full Text] [Related]
42. Construction and characterisation of near-isogenic Plutella xylostella (Lepidoptera: Plutellidae) strains resistant to Cry1Ac toxin. Zhu X; Lei Y; Yang Y; Baxter SW; Li J; Wu Q; Wang S; Xie W; Guo Z; Fu W; Zhang Y Pest Manag Sci; 2015 Feb; 71(2):225-33. PubMed ID: 24687616 [TBL] [Abstract][Full Text] [Related]
43. Toxicity of deltamethrin and cypermethrin to the larvae of the diamond-back moth, Plutella xylostella L. Ho SH; Lee BH; See D Toxicol Lett; 1983; 19(1-2):127-31. PubMed ID: 6658817 [TBL] [Abstract][Full Text] [Related]
44. Evaluation of selective toxicity of five pesticides against Plutella xylostella (Lep: Plutellidae) and their side-effects against Cotesia plutellae (Hym: Braconidae) and Oomyzus sokolowskii (Hym: Eulophidae). Shi ZH; Guo SJ; Lin WC; Liu SS Pest Manag Sci; 2004 Dec; 60(12):1213-9. PubMed ID: 15578602 [TBL] [Abstract][Full Text] [Related]
45. Silencing β-1,3-glucan binding protein enhances the susceptibility of Plutella xylostella to entomopathogenic fungus Isaria cicadae. Li S; Hao Z; Xu H; Gao Y; Zhang M; Liang J; Dang X Pest Manag Sci; 2022 Jul; 78(7):3117-3127. PubMed ID: 35442542 [TBL] [Abstract][Full Text] [Related]
46. Bio-efficacy of chitinolytic Bacillus thuringiensis isolates native to northwestern Indian Himalayas and their synergistic toxicity with selected insecticides. Subbanna ARNS; Chandrashekara C; Stanley J; Mishra KK; Mishra PK; Pattanayak A Pestic Biochem Physiol; 2019 Jul; 158():166-174. PubMed ID: 31378353 [TBL] [Abstract][Full Text] [Related]
47. The Combination of Jiang YX; Chen JZ; Li MW; Zha BH; Huang PR; Chu XM; Chen J; Yang G Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008871 [TBL] [Abstract][Full Text] [Related]
49. Larval susceptibility of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), to Bacillus thuringiensis H serovars isolated in Japan. Higuchi K; Saitoh H; Mizuki E; Ichimatsu T; Ohba M Microbiol Res; 2000 Apr; 155(1):23-9. PubMed ID: 10830896 [TBL] [Abstract][Full Text] [Related]
50. Toxicity of Bacillus thuringiensis var. israelensis formulations, spinosad, and selected synthetic insecticides to Chironomus tepperi larvae. Stevens MM; Helliwell S; Hughes PA J Am Mosq Control Assoc; 2005 Dec; 21(4):446-50. PubMed ID: 16506570 [TBL] [Abstract][Full Text] [Related]
51. Factors affecting the toxicity of Bacillus thuringiensis var. israelensis and Bacillus sphaericus to fourth instar larvae of Chironomus tepperi (Diptera: Chironomidae). Stevens MM; Akhurst RJ; Clifton MA; Hughes PA J Invertebr Pathol; 2004 Jul; 86(3):104-10. PubMed ID: 15261774 [TBL] [Abstract][Full Text] [Related]
52. Biosafety of an entomopathogenic fungus Isaria fumosorosea in an acute dermal test in rabbits. Brunner-Mendoza C; Navarro-Barranco H; León-Mancilla B; Pérez-Torres A; Toriello C Cutan Ocul Toxicol; 2017 Mar; 36(1):12-18. PubMed ID: 27055483 [TBL] [Abstract][Full Text] [Related]
53. Potentiation of insecticidal activity of Bacillus thuringiensis subsp. kurstaki HD-1 by proteinase inhibitors in the American bollworm, Helicoverpa armigera (Hübner). Gujar T; Kalia V; Kumari A; Prasad TV Indian J Exp Biol; 2004 Feb; 42(2):157-63. PubMed ID: 15282948 [TBL] [Abstract][Full Text] [Related]
54. Acute, sublethal and combination effects of azadirachtin and Bacillus thuringiensis toxins on Helicoverpa armigera (Lepidoptera: Noctuidae) larvae. Singh G; Rup PJ; Koul O Bull Entomol Res; 2007 Aug; 97(4):351-7. PubMed ID: 17645816 [TBL] [Abstract][Full Text] [Related]
55. Time-concentration-mortality modeling of the synergistic interaction of Beauveria bassiana and imidacloprid against Nilaparvata lugens. Feng MG; Pu XY Pest Manag Sci; 2005 Apr; 61(4):363-70. PubMed ID: 15751011 [TBL] [Abstract][Full Text] [Related]
56. Contributions of cellular and humoral immunity of Galleria mellonella larvae in defence against oral infection by Bacillus thuringiensis. Grizanova EV; Dubovskiy IM; Whitten MM; Glupov VV J Invertebr Pathol; 2014 Jun; 119():40-6. PubMed ID: 24735783 [TBL] [Abstract][Full Text] [Related]
57. Comparative toxicity of selected larvicides and insect growth regulators to a Florida laboratory population of Aedes albopictus. Ali A; Nayar JK; Xue RD J Am Mosq Control Assoc; 1995 Mar; 11(1):72-6. PubMed ID: 7616194 [TBL] [Abstract][Full Text] [Related]
58. Broadening the insecticidal spectrum of Lepidoptera-specific Bacillus thuringiensis strains by chromosomal integration of cry3A. Yue C; Sun M; Yu Z Biotechnol Bioeng; 2005 Aug; 91(3):296-303. PubMed ID: 15984034 [TBL] [Abstract][Full Text] [Related]
59. Physiological and Molecular Response Modifications by Ultraviolet-C Radiation in Khan MM; Fan ZY; Sabir IA; Hafeez M; Wen S; Wu JH; Qiu BL Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36077199 [TBL] [Abstract][Full Text] [Related]
60. Response of Lymantria dispar L. (Lepidoptera: Lymantriidae) to Bacillus thuringiensis subsp. kurstaki at different ingested doses and temperatures. van Frankenhuyzen K; Régnière J; Bernier-Cardou M J Invertebr Pathol; 2008 Nov; 99(3):263-74. PubMed ID: 18644375 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]