BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 24669001)

  • 1. Developing prescribing guidelines for microprocessor-controlled prosthetic knees in the South East England.
    Sedki I; Fisher K
    Prosthet Orthot Int; 2015 Jun; 39(3):250-4. PubMed ID: 24669001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Economic benefits of microprocessor controlled prosthetic knees: a modeling study.
    Chen C; Hanson M; Chaturvedi R; Mattke S; Hillestad R; Liu HH
    J Neuroeng Rehabil; 2018 Sep; 15(Suppl 1):62. PubMed ID: 30255802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of a stance phase microprocessor-controlled knee prosthesis on level walking in lower functioning individuals with a transfemoral amputation.
    Eberly VJ; Mulroy SJ; Gronley JK; Perry J; Yule WJ; Burnfield JM
    Prosthet Orthot Int; 2014 Dec; 38(6):447-55. PubMed ID: 24135259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gait and balance of transfemoral amputees using passive mechanical and microprocessor-controlled prosthetic knees.
    Kaufman KR; Levine JA; Brey RH; Iverson BK; McCrady SK; Padgett DJ; Joyner MJ
    Gait Posture; 2007 Oct; 26(4):489-93. PubMed ID: 17869114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional added value of microprocessor-controlled knee joints in daily life performance of Medicare Functional Classification Level-2 amputees.
    Theeven P; Hemmen B; Rings F; Meys G; Brink P; Smeets R; Seelen H
    J Rehabil Med; 2011 Oct; 43(10):906-15. PubMed ID: 21947182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinematics in the terminal swing phase of unilateral transfemoral amputees: microprocessor-controlled versus swing-phase control prosthetic knees.
    Mâaref K; Martinet N; Grumillier C; Ghannouchi S; André JM; Paysant J
    Arch Phys Med Rehabil; 2010 Jun; 91(6):919-25. PubMed ID: 20510984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benefits of microprocessor-controlled prosthetic knees to limited community ambulators: systematic review.
    Kannenberg A; Zacharias B; Pröbsting E
    J Rehabil Res Dev; 2014; 51(10):1469-96. PubMed ID: 25856664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of microprocessor controlled exo-prosthetic knees on limited community ambulators: systematic review and meta-analysis.
    Hahn A; Bueschges S; Prager M; Kannenberg A
    Disabil Rehabil; 2022 Dec; 44(24):7349-7367. PubMed ID: 34694952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cost-effectiveness of microprocessor-controlled prosthetic knees.
    Dillon M; Ratcliffe J
    Arch Phys Med Rehabil; 2010 Apr; 91(4):663; author reply 664. PubMed ID: 20382304
    [No Abstract]   [Full Text] [Related]  

  • 10. Re: Gait and balance of transfemoral amputees using passive mechanical and microprocessor controlled prosthetic knees by Kaufman et al. [Gait and Posture 20 (2007) 489-493].
    Dillon M; Bach T
    Gait Posture; 2009 Jan; 29(1):161-2; author reply 163-4. PubMed ID: 18722125
    [No Abstract]   [Full Text] [Related]  

  • 11. Evaluation of function, performance, and preference as transfemoral amputees transition from mechanical to microprocessor control of the prosthetic knee.
    Hafner BJ; Willingham LL; Buell NC; Allyn KJ; Smith DG
    Arch Phys Med Rehabil; 2007 Feb; 88(2):207-17. PubMed ID: 17270519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of the Delphi Technique for developing national clinical guidelines for prescription of lower-limb prostheses.
    van der Linde H; Hofstad CJ; van Limbeek J; Postema K; Geertzen JH
    J Rehabil Res Dev; 2005; 42(5):693-704. PubMed ID: 16586195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microprocessor prosthetic knees.
    Berry D
    Phys Med Rehabil Clin N Am; 2006 Feb; 17(1):91-113, vii. PubMed ID: 16517347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preoperative characteristics and functional outcomes of lower limb amputees treated at Southern Älvsborg Hospital, Sweden.
    Glemne M; Ramstrand N; Crafoord J; Nygren L
    Prosthet Orthot Int; 2013 Aug; 37(4):298-304. PubMed ID: 23282296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Kenevo microprocessor-controlled prosthetic knee compared with non-microprocessor-controlled knees in individuals older than 65 years in Sweden: A cost-effectiveness and budget-impact analysis.
    Kuhlmann A; Hagberg K; Kamrad I; Ramstrand N; Seidinger S; Berg H
    Prosthet Orthot Int; 2022 Oct; 46(5):414-424. PubMed ID: 35511441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinicians' perspectives on decision making in lower limb amputee rehabilitation.
    Sansam K; O'Connor RJ; Neumann V; Bhakta B
    J Rehabil Med; 2014 May; 46(5):447-53. PubMed ID: 24590358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Outcomes associated with the use of microprocessor-controlled prosthetic knees among individuals with unilateral transfemoral limb loss: a systematic review.
    Sawers AB; Hafner BJ
    J Rehabil Res Dev; 2013; 50(3):273-314. PubMed ID: 23881757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prescribing to fit the needs of older people--the NHS Scotland Polypharmacy Guidance, 2nd edition.
    Wilson M; Mair A; Dreischulte T; Witham MD;
    J R Coll Physicians Edinb; 2015; 45(2):108-13. PubMed ID: 26181524
    [No Abstract]   [Full Text] [Related]  

  • 19. Impact of stance phase microprocessor-controlled knee prosthesis on ramp negotiation and community walking function in K2 level transfemoral amputees.
    Burnfield JM; Eberly VJ; Gronely JK; Perry J; Yule WJ; Mulroy SJ
    Prosthet Orthot Int; 2012 Mar; 36(1):95-104. PubMed ID: 22223685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Biomechanics and evaluation of the microprocessor-controlled C-Leg exoprosthesis knee joint].
    Stinus H
    Z Orthop Ihre Grenzgeb; 2000; 138(3):278-82. PubMed ID: 10929622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.