BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 24669201)

  • 1. The alternative route to heme in the methanogenic archaeon Methanosarcina barkeri.
    Kühner M; Haufschildt K; Neumann A; Storbeck S; Streif J; Layer G
    Archaea; 2014; 2014():327637. PubMed ID: 24669201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heme biosynthesis in Methanosarcina barkeri via a pathway involving two methylation reactions.
    Buchenau B; Kahnt J; Heinemann IU; Jahn D; Thauer RK
    J Bacteriol; 2006 Dec; 188(24):8666-8. PubMed ID: 17028275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Radical SAM Heme Synthase AhbD from
    Fix I; Heidinger L; Friedrich T; Layer G
    Biomolecules; 2023 Aug; 13(8):. PubMed ID: 37627333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The structure, function and properties of sirohaem decarboxylase--an enzyme with structural homology to a transcription factor family that is part of the alternative haem biosynthesis pathway.
    Palmer DJ; Schroeder S; Lawrence AD; Deery E; Lobo SA; Saraiva LM; McLean KJ; Munro AW; Ferguson SJ; Pickersgill RW; Brown DG; Warren MJ
    Mol Microbiol; 2014 Jul; 93(2):247-61. PubMed ID: 24865947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel pathway for the biosynthesis of heme in Archaea: genome-based bioinformatic predictions and experimental evidence.
    Storbeck S; Rolfes S; Raux-Deery E; Warren MJ; Jahn D; Layer G
    Archaea; 2010 Dec; 2010():175050. PubMed ID: 21197080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The auxiliary [4Fe-4S] cluster of the Radical SAM heme synthase from
    Kühner M; Schweyen P; Hoffmann M; Ramos JV; Reijerse EJ; Lubitz W; Bröring M; Layer G
    Chem Sci; 2016 Jul; 7(7):4633-4643. PubMed ID: 30155111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterisation of Desulfovibrio vulgaris haem b synthase, a radical SAM family member.
    Lobo SA; Lawrence AD; Romão CV; Warren MJ; Teixeira M; Saraiva LM
    Biochim Biophys Acta; 2014 Jul; 1844(7):1238-47. PubMed ID: 24713144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutagenesis of the C1 oxidation pathway in Methanosarcina barkeri: new insights into the Mtr/Mer bypass pathway.
    Welander PV; Metcalf WW
    J Bacteriol; 2008 Mar; 190(6):1928-36. PubMed ID: 18178739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in the biosynthesis of modified tetrapyrroles: the discovery of an alternative pathway for the formation of heme and heme d 1.
    Bali S; Palmer DJ; Schroeder S; Ferguson SJ; Warren MJ
    Cell Mol Life Sci; 2014 Aug; 71(15):2837-63. PubMed ID: 24515122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Pseudomonas aeruginosa nirE gene encodes the S-adenosyl-L-methionine-dependent uroporphyrinogen III methyltransferase required for heme d(1) biosynthesis.
    Storbeck S; Walther J; Müller J; Parmar V; Schiebel HM; Kemken D; Dülcks T; Warren MJ; Layer G
    FEBS J; 2009 Oct; 276(20):5973-82. PubMed ID: 19754882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formaldehyde activating enzyme (Fae) and hexulose-6-phosphate synthase (Hps) in Methanosarcina barkeri: a possible function in ribose-5-phosphate biosynthesis.
    Goenrich M; Thauer RK; Yurimoto H; Kato N
    Arch Microbiol; 2005 Oct; 184(1):41-8. PubMed ID: 16075199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic, Genomic, and Transcriptomic Studies of Pyruvate Metabolism in Methanosarcina barkeri Fusaro.
    López Muñoz MM; Schönheit P; Metcalf WW
    J Bacteriol; 2015 Nov; 197(22):3592-600. PubMed ID: 26350133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tetrahydrofolate-specific enzymes in Methanosarcina barkeri and growth dependence of this methanogenic archaeon on folic acid or p-aminobenzoic acid.
    Buchenau B; Thauer RK
    Arch Microbiol; 2004 Oct; 182(4):313-25. PubMed ID: 15349715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Misacylation of pyrrolysine tRNA in vitro and in vivo.
    Gundllapalli S; Ambrogelly A; Umehara T; Li D; Polycarpo C; Söll D
    FEBS Lett; 2008 Oct; 582(23-24):3353-8. PubMed ID: 18775710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elucidation of the biosynthesis of the methane catalyst coenzyme F
    Moore SJ; Sowa ST; Schuchardt C; Deery E; Lawrence AD; Ramos JV; Billig S; Birkemeyer C; Chivers PT; Howard MJ; Rigby SE; Layer G; Warren MJ
    Nature; 2017 Mar; 543(7643):78-82. PubMed ID: 28225763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathways of Iron and Sulfur Acquisition, Cofactor Assembly, Destination, and Storage in Diverse Archaeal Methanogens and Alkanotrophs.
    Johnson C; England A; Munro-Ehrlich M; Colman DR; DuBois JL; Boyd ES
    J Bacteriol; 2021 Aug; 203(17):e0011721. PubMed ID: 34124941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Ferredoxin Disulfide Reductase Delivers Electrons to the Methanosarcina barkeri Class III Ribonucleotide Reductase.
    Wei Y; Li B; Prakash D; Ferry JG; Elliott SJ; Stubbe J
    Biochemistry; 2015 Dec; 54(47):7019-28. PubMed ID: 26536144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and catalytic properties of Ech hydrogenase from Methanosarcina barkeri.
    Meuer J; Bartoschek S; Koch J; Künkel A; Hedderich R
    Eur J Biochem; 1999 Oct; 265(1):325-35. PubMed ID: 10491189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions between the promoter regions of nitrogenase structural genes (nifHDK2) and DNA-binding proteins from N2- and ammonium-grown cells of the archaeon Methanosarcina barkeri 227.
    Chien Y; Helmann JD; Zinder SH
    J Bacteriol; 1998 May; 180(10):2723-8. PubMed ID: 9573159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro methanol production from methyl coenzyme M using the Methanosarcina barkeri MtaABC protein complex.
    Dong M; Gonzalez TD; Klems MM; Steinberg LM; Chen W; Papoutsakis ET; Bahnson BJ
    Biotechnol Prog; 2017 Sep; 33(5):1243-1249. PubMed ID: 28556629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.