BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 24669728)

  • 1. Carbon accumulation and nitrogen pool recovery during transitions from savanna to forest in central Brazil.
    Pellegrini AF; Hoffmann WA; Franco AC
    Ecology; 2014 Feb; 95(2):342-52. PubMed ID: 24669728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fire alters ecosystem carbon and nutrients but not plant nutrient stoichiometry or composition in tropical savanna.
    Pellegrini AF; Hedin LO; Staver AC; Govender N
    Ecology; 2015 May; 96(5):1275-85. PubMed ID: 26236841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tree topkill, not mortality, governs the dynamics of savanna-forest boundaries under frequent fire in central Brazil.
    Hoffmann WA; Adasme R; Haridasan M; de Carvalho MT; Geiger EL; Pereira MA; Gotsch SG; Franco AC
    Ecology; 2009 May; 90(5):1326-37. PubMed ID: 19537552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sixteen hundred years of increasing tree cover prior to modern deforestation in Southern Amazon and Central Brazilian savannas.
    Wright JL; Bomfim B; Wong CI; Marimon-Júnior BH; Marimon BS; Silva LCR
    Glob Chang Biol; 2021 Jan; 27(1):136-150. PubMed ID: 33128306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity.
    Pellegrini AFA; Ahlström A; Hobbie SE; Reich PB; Nieradzik LP; Staver AC; Scharenbroch BC; Jumpponen A; Anderegg WRL; Randerson JT; Jackson RB
    Nature; 2018 Jan; 553(7687):194-198. PubMed ID: 29227988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequent fire affects soil nitrogen and carbon in an African savanna by changing woody cover.
    Coetsee C; Bond WJ; February EC
    Oecologia; 2010 Apr; 162(4):1027-34. PubMed ID: 20213154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soil phosphorus does not keep pace with soil carbon and nitrogen accumulation following woody encroachment.
    Zhou Y; Boutton TW; Wu XB
    Glob Chang Biol; 2018 May; 24(5):1992-2007. PubMed ID: 29323781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seasonal leaf dynamics across a tree density gradient in a Brazilian savanna.
    Hoffmann WA; da Silva ER; Machado GC; Bucci SJ; Scholz FG; Goldstein G; Meinzer FC
    Oecologia; 2005 Sep; 145(2):307-16. PubMed ID: 15965754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trade-offs between savanna woody plant diversity and carbon storage in the Brazilian Cerrado.
    Pellegrini AF; Socolar JB; Elsen PR; Giam X
    Glob Chang Biol; 2016 Oct; 22(10):3373-82. PubMed ID: 26919289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contributions of woody and herbaceous vegetation to tropical savanna ecosystem productivity: a quasi-global estimate.
    Lloyd J; Bird MI; Vellen L; Miranda AC; Veenendaal EM; Djagbletey G; Miranda HS; Cook G; Farquhar GD
    Tree Physiol; 2008 Mar; 28(3):451-68. PubMed ID: 18171668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variation of biomass and carbon pools with forest type in temperate forests of Kashmir Himalaya, India.
    Dar JA; Sundarapandian S
    Environ Monit Assess; 2015 Feb; 187(2):55. PubMed ID: 25638061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of ecosystem management on microbial community level physiological profiles of postmining forest rehabilitation.
    Cookson WR; O'Donnell AJ; Grant CD; Grierson PF; Murphy DV
    Microb Ecol; 2008 Feb; 55(2):321-32. PubMed ID: 17899248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fire drives functional thresholds on the savanna-forest transition.
    Dantas Vde L; Batalha MA; Pausas JG
    Ecology; 2013 Nov; 94(11):2454-63. PubMed ID: 24400497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of four decades of fire manipulation on woody vegetation structure in Savanna.
    Higgins SI; Bond WJ; February EC; Bronn A; Euston-Brown DI; Enslin B; Govender N; Rademan L; O'Regan S; Potgieter AL; Scheiter S; Sowry R; Trollope L; Trollope WS
    Ecology; 2007 May; 88(5):1119-25. PubMed ID: 17536398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soil carbon and nitrogen storage in response to fire in a temperate mixed-grass savanna.
    Dai X; Boutton TW; Hailemichael M; Ansley RJ; Jessup KE
    J Environ Qual; 2006; 35(4):1620-8. PubMed ID: 16825482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Woody encroachment reduces nutrient limitation and promotes soil carbon sequestration.
    Blaser WJ; Shanungu GK; Edwards PJ; Olde Venterink H
    Ecol Evol; 2014 Apr; 4(8):1423-38. PubMed ID: 24834338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Earthworm effects on the incorporation of litter C and N into soil organic matter in a sugar maple forest.
    Fahey TJ; Yavitt JB; Sherman RE; Maerz JC; Groffman PM; Fisk MC; Bohlen PJ
    Ecol Appl; 2013 Jul; 23(5):1185-201. PubMed ID: 23967585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying fire severity, carbon, and nitrogen emissions in Alaska's boreal forest.
    Boby LA; Schuur EA; Mack MC; Verbyla D; Johnstone JF
    Ecol Appl; 2010 Sep; 20(6):1633-47. PubMed ID: 20945764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrogen balance along a northern boreal forest fire chronosequence.
    Palviainen M; Pumpanen J; Berninger F; Ritala K; Duan B; Heinonsalo J; Sun H; Köster E; Köster K
    PLoS One; 2017; 12(3):e0174720. PubMed ID: 28358884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nutrient limitation in tropical savannas across multiple scales and mechanisms.
    Pellegrini AF
    Ecology; 2016 Feb; 97(2):313-24. PubMed ID: 27145607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.