These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 24669740)

  • 41. Ants on plants: a meta-analysis of the role of ants as plant biotic defenses.
    Rosumek FB; Silveira FA; de S Neves F; de U Barbosa NP; Diniz L; Oki Y; Pezzini F; Fernandes GW; Cornelissen T
    Oecologia; 2009 Jun; 160(3):537-49. PubMed ID: 19271242
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ant species richness and interactions in canopies of two distinct successional stages in a tropical dry forest.
    Antoniazzi R; Garro RNSL; Dáttilo W; Ribeiro SP; Neves FS
    Naturwissenschaften; 2019 Apr; 106(5-6):20. PubMed ID: 31041541
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hollow Internodes Permit a Neotropical Understory Plant to Shelter Multiple Mutualistic Ant Species, Obtaining Protection and Nutrient Provisioning (Myrmecotrophy).
    Dejean A; Petitclerc F; Compin A; Azémar F; Corbara B; Delabie JHC; Leroy C
    Am Nat; 2017 Nov; 190(5):E124-E131. PubMed ID: 29053365
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Resilient networks of ant-plant mutualists in Amazonian forest fragments.
    Passmore HA; Bruna EM; Heredia SM; Vasconcelos HL
    PLoS One; 2012; 7(8):e40803. PubMed ID: 22912666
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Indirect effects drive coevolution in mutualistic networks.
    Guimarães PR; Pires MM; Jordano P; Bascompte J; Thompson JN
    Nature; 2017 Oct; 550(7677):511-514. PubMed ID: 29045396
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Neither ant dominance nor abundance explain ant-plant network structure in Mexican temperate forests.
    Juárez-Juárez B; Cuautle M; Castillo-Guevara C; López-Vázquez K; Gómez-Ortigoza M; Gómez-Lazaga M; Díaz-Castelazo C; Lara C; Pérez-Toledo GR; Reyes M
    PeerJ; 2020; 8():e10435. PubMed ID: 33354422
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evolution of extrafloral nectaries: adaptive process and selective regime changes from forest to savanna.
    Nogueira A; Rey PJ; Lohmann LG
    J Evol Biol; 2012 Nov; 25(11):2325-40. PubMed ID: 23013544
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Unravelling Darwin's entangled bank: architecture and robustness of mutualistic networks with multiple interaction types.
    Dáttilo W; Lara-Rodríguez N; Jordano P; Guimarães PR; Thompson JN; Marquis RJ; Medeiros LP; Ortiz-Pulido R; Marcos-García MA; Rico-Gray V
    Proc Biol Sci; 2016 Nov; 283(1843):. PubMed ID: 27881755
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Friend or foe? A behavioral and stable isotopic investigation of an ant-plant symbiosis.
    Tillberg CV
    Oecologia; 2004 Aug; 140(3):506-15. PubMed ID: 15179580
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Imprints of indirect interactions on a resource-mediated ant-plant network across different levels of network organization.
    Ballarin CS; Vizentin-Bugoni J; Hachuy-Filho L; Amorim FW
    Oecologia; 2024 Mar; 204(3):661-673. PubMed ID: 38448764
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ant-plant associations in different forests in Venezuela.
    Goitía W; Jaffé K
    Neotrop Entomol; 2009; 38(1):753-77. PubMed ID: 19347094
    [TBL] [Abstract][Full Text] [Related]  

  • 52. How plants shape the ant community in the Amazonian rainforest canopy: the key role of extrafloral nectaries and homopteran honeydew.
    Blüthgen N; Verhaagh M; Goitía W; Jaffé K; Morawetz W; Barthlott W
    Oecologia; 2000 Oct; 125(2):229-240. PubMed ID: 24595834
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Trade-offs in an ant-plant-fungus mutualism.
    Orivel J; Malé PJ; Lauth J; Roux O; Petitclerc F; Dejean A; Leroy C
    Proc Biol Sci; 2017 Mar; 284(1850):. PubMed ID: 28298342
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mutualism fails when climate response differs between interacting species.
    Warren RJ; Bradford MA
    Glob Chang Biol; 2014 Feb; 20(2):466-74. PubMed ID: 24399754
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Indirect benefits of symbiotic coccoids for an ant-defended myrmecophytic tree.
    Pringle EG; Dirzo R; Gordon DM
    Ecology; 2011 Jan; 92(1):37-46. PubMed ID: 21560674
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bottom-up effects of plant genotype on aphids, ants, and predators.
    Johnson MT
    Ecology; 2008 Jan; 89(1):145-54. PubMed ID: 18376556
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Highly modular pattern in ant-plant interactions involving specialized and non-specialized myrmecophytes.
    Dejean A; Azémar F; Petitclerc F; Delabie JHC; Corbara B; Leroy C; Céréghino R; Compin A
    Naturwissenschaften; 2018 Jun; 105(7-8):43. PubMed ID: 29951968
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Thermal tolerance affects mutualist attendance in an ant-plant protection mutualism.
    Fitzpatrick G; Lanan MC; Bronstein JL
    Oecologia; 2014 Sep; 176(1):129-38. PubMed ID: 25012597
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Disruption of ant-aphid mutualism in canopy enhances the abundance of beetles on the forest floor.
    Zhang S; Zhang Y; Ma K
    PLoS One; 2012; 7(4):e35468. PubMed ID: 22558156
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enough is enough: the effects of symbiotic ant abundance on herbivory, growth, and reproduction in an African acacia.
    Palmer TM; Brody AK
    Ecology; 2013 Mar; 94(3):683-91. PubMed ID: 23687894
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.