These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 24669749)

  • 1. Dependence of the absorption and optical surface plasmon scattering of MoS₂ nanoparticles on aspect ratio, size, and media.
    Yadgarov L; Choi CL; Sedova A; Cohen A; Rosentsveig R; Bar-Elli O; Oron D; Dai H; Tenne R
    ACS Nano; 2014 Apr; 8(4):3575-83. PubMed ID: 24669749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiative and nonradiative properties of single plasmonic nanoparticles and their assemblies.
    Chang WS; Willingham B; Slaughter LS; Dominguez-Medina S; Swanglap P; Link S
    Acc Chem Res; 2012 Nov; 45(11):1936-45. PubMed ID: 22512668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2005 Nov; 109(43):20331-8. PubMed ID: 16853630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the dielectric constant of the surrounding medium and the substrate on the surface plasmon resonance spectrum and sensitivity factors of highly symmetric systems: silver nanocubes.
    Mahmoud MA; Chamanzar M; Adibi A; El-Sayed MA
    J Am Chem Soc; 2012 Apr; 134(14):6434-42. PubMed ID: 22420824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonant Rayleigh light scattering of single Au nanoparticles with different sizes and shapes.
    Truong PL; Ma X; Sim SJ
    Nanoscale; 2014 Feb; 6(4):2307-15. PubMed ID: 24413584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoupling and tuning the light absorption and scattering resonances in metallic composite nanostructures.
    Danan Y; Ramon Y; Azougi J; Douplik A; Zalevsky Z
    Opt Express; 2015 Nov; 23(22):29089-99. PubMed ID: 26561178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2.
    Dhakal KP; Duong DL; Lee J; Nam H; Kim M; Kan M; Lee YH; Kim J
    Nanoscale; 2014 Nov; 6(21):13028-35. PubMed ID: 25247614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: absolute cross sections and branching ratios.
    Langhammer C; Kasemo B; Zorić I
    J Chem Phys; 2007 May; 126(19):194702. PubMed ID: 17523823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface enhanced absorption and transmission from dye coated gold nanoparticles in thin films.
    Rai VN; Srivastava AK; Mukherjee C; Deb SK
    Appl Opt; 2012 May; 51(14):2606-15. PubMed ID: 22614480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomistic structure dependence of the collective excitation in metal nanoparticles.
    Negre CF; Sánchez CG
    J Chem Phys; 2008 Jul; 129(3):034710. PubMed ID: 18647041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment.
    Miller MM; Lazarides AA
    J Phys Chem B; 2005 Nov; 109(46):21556-65. PubMed ID: 16853799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical properties of shaped silver nanoparticles.
    Vodnik VV; Bozanić DK; Bibić N; Saponjić ZV; Nedeljković JM
    J Nanosci Nanotechnol; 2008 Jul; 8(7):3511-5. PubMed ID: 19051904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.
    Kim K; Choi JY; Lee HB; Shin KS
    J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of solvent refractive index on the surface plasmon resonance nanoparticle optical absorption.
    Ertas G; Suzer S
    J Nanosci Nanotechnol; 2007 Dec; 7(12):4333-8. PubMed ID: 18283811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sharp Transition from Nonmetallic Au
    Higaki T; Zhou M; Lambright KJ; Kirschbaum K; Sfeir MY; Jin R
    J Am Chem Soc; 2018 May; 140(17):5691-5695. PubMed ID: 29658712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface chemistry: a non-negligible parameter in determining optical properties of small colloidal metal nanoparticles.
    Sun Y; Gray SK; Peng S
    Phys Chem Chem Phys; 2011 Jul; 13(25):11814-26. PubMed ID: 21611673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.