These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
324 related articles for article (PubMed ID: 24669764)
1. Polyphenolic compounds appear to limit the nutritional benefit of biofortified higher iron black bean (Phaseolus vulgaris L.). Tako E; Beebe SE; Reed S; Hart JJ; Glahn RP Nutr J; 2014 Mar; 13():28. PubMed ID: 24669764 [TBL] [Abstract][Full Text] [Related]
2. Biofortified red mottled beans (Phaseolus vulgaris L.) in a maize and bean diet provide more bioavailable iron than standard red mottled beans: studies in poultry (Gallus gallus) and an in vitro digestion/Caco-2 model. Tako E; Blair MW; Glahn RP Nutr J; 2011 Oct; 10():113. PubMed ID: 21995581 [TBL] [Abstract][Full Text] [Related]
3. Studies of Cream Seeded Carioca Beans (Phaseolus vulgaris L.) from a Rwandan Efficacy Trial: In Vitro and In Vivo Screening Tools Reflect Human Studies and Predict Beneficial Results from Iron Biofortified Beans. Tako E; Reed S; Anandaraman A; Beebe SE; Hart JJ; Glahn RP PLoS One; 2015; 10(9):e0138479. PubMed ID: 26381264 [TBL] [Abstract][Full Text] [Related]
4. Higher iron pearl millet (Pennisetum glaucum L.) provides more absorbable iron that is limited by increased polyphenolic content. Tako E; Reed SM; Budiman J; Hart JJ; Glahn RP Nutr J; 2015 Jan; 14():11. PubMed ID: 25614193 [TBL] [Abstract][Full Text] [Related]
5. An In Vivo ( Wiesinger JA; Glahn RP; Cichy KA; Kolba N; Hart JJ; Tako E Nutrients; 2019 Aug; 11(8):. PubMed ID: 31374868 [TBL] [Abstract][Full Text] [Related]
6. Biofortified black beans in a maize and bean diet provide more bioavailable iron to piglets than standard black beans. Tako E; Laparra JM; Glahn RP; Welch RM; Lei XG; Beebe S; Miller DD J Nutr; 2009 Feb; 139(2):305-9. PubMed ID: 19106319 [TBL] [Abstract][Full Text] [Related]
7. Characterizing the gut (Gallus gallus) microbiota following the consumption of an iron biofortified Rwandan cream seeded carioca (Phaseolus Vulgaris L.) bean-based diet. Reed S; Neuman H; Glahn RP; Koren O; Tako E PLoS One; 2017; 12(8):e0182431. PubMed ID: 28796793 [TBL] [Abstract][Full Text] [Related]
8. Iron Biofortified Carioca Bean ( Dias DM; Kolba N; Binyamin D; Ziv O; Regini Nutti M; Martino HSD; Glahn RP; Koren O; Tako E Nutrients; 2018 Dec; 10(12):. PubMed ID: 30551574 [TBL] [Abstract][Full Text] [Related]
9. High bioavailability iron maize (Zea mays L.) developed through molecular breeding provides more absorbable iron in vitro (Caco-2 model) and in vivo (Gallus gallus). Tako E; Hoekenga OA; Kochian LV; Glahn RP Nutr J; 2013 Jan; 12():3. PubMed ID: 23286295 [TBL] [Abstract][Full Text] [Related]
10. White beans provide more bioavailable iron than red beans: studies in poultry (Gallus gallus) and an in vitro digestion/Caco-2 model. Tako E; Glahn RP Int J Vitam Nutr Res; 2010 Dec; 80(6):416-29. PubMed ID: 21792822 [TBL] [Abstract][Full Text] [Related]
11. Iron bioavailability to piglets from red and white common beans (Phaseolus vulgaris). Tan SY; Yeung CK; Tako E; Glahn RP; Welch RM; Lei X; Miller DD J Agric Food Chem; 2008 Jul; 56(13):5008-14. PubMed ID: 18543933 [TBL] [Abstract][Full Text] [Related]
12. A Randomized Feeding Trial of Iron-Biofortified Beans on School Children in Mexico. Finkelstein JL; Mehta S; Villalpando S; Mundo-Rosas V; Luna SV; Rahn M; Shamah-Levy T; Beebe SE; Haas JD Nutrients; 2019 Feb; 11(2):. PubMed ID: 30759887 [TBL] [Abstract][Full Text] [Related]
13. Identification of Black Bean (Phaseolus vulgaris L.) Polyphenols That Inhibit and Promote Iron Uptake by Caco-2 Cells. Hart JJ; Tako E; Kochian LV; Glahn RP J Agric Food Chem; 2015 Jul; 63(25):5950-6. PubMed ID: 26044037 [TBL] [Abstract][Full Text] [Related]
14. Iron Bioavailability Studies of the First Generation of Iron-Biofortified Beans Released in Rwanda. Glahn R; Tako E; Hart J; Haas J; Lung'aho M; Beebe S Nutrients; 2017 Jul; 9(7):. PubMed ID: 28754026 [TBL] [Abstract][Full Text] [Related]
15. Kaempferol in red and pinto bean seed (Phaseolus vulgaris L.) coats inhibits iron bioavailability using an in vitro digestion/human Caco-2 cell model. Hu Y; Cheng Z; Heller LI; Krasnoff SB; Glahn RP; Welch RM J Agric Food Chem; 2006 Nov; 54(24):9254-61. PubMed ID: 17117818 [TBL] [Abstract][Full Text] [Related]
16. Zinc and selenium accumulation and their effect on iron bioavailability in common bean seeds. de Figueiredo MA; Boldrin PF; Hart JJ; de Andrade MJB; Guilherme LRG; Glahn RP; Li L Plant Physiol Biochem; 2017 Feb; 111():193-202. PubMed ID: 27940270 [TBL] [Abstract][Full Text] [Related]
17. Iron absorption from beans with different contents of iron, evaluated by stable isotopes. Junqueira-Franco MVM; Dutra de Oliveira JE; Nutti MR; Pereira HS; Carvalho JLV; Abrams SA; Brandão CFC; Marchini JS Clin Nutr ESPEN; 2018 Jun; 25():121-125. PubMed ID: 29779806 [TBL] [Abstract][Full Text] [Related]
18. Iron speciation in beans (Phaseolus vulgaris) biofortified by common breeding. Hoppler M; Egli I; Petry N; Gille D; Zeder C; Walczyk T; Blair MW; Hurrell RF J Food Sci; 2014 Sep; 79(9):C1629-34. PubMed ID: 25124357 [TBL] [Abstract][Full Text] [Related]
19. Iron Concentrations in Biofortified Beans and Nonbiofortified Marketplace Varieties in East Africa Are Similar. Glahn RP; Wiesinger JA; Lung'aho MG J Nutr; 2020 Nov; 150(11):3013-3023. PubMed ID: 32678427 [TBL] [Abstract][Full Text] [Related]
20. Iron and zinc bioavailabilities to pigs from red and white beans (Phaseolus vulgaris L.) are similar. Tako E; Glahn RP; Laparra JM; Welch RM; Lei X; Kelly JD; Rutzke MA; Miller DD J Agric Food Chem; 2009 Apr; 57(8):3134-40. PubMed ID: 19368350 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]