BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 24669769)

  • 1. A graph theoretic approach to utilizing protein structure to identify non-random somatic mutations.
    Ryslik GA; Cheng Y; Cheung KH; Modis Y; Zhao H
    BMC Bioinformatics; 2014 Mar; 15():86. PubMed ID: 24669769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilizing protein structure to identify non-random somatic mutations.
    Ryslik GA; Cheng Y; Cheung KH; Modis Y; Zhao H
    BMC Bioinformatics; 2013 Jun; 14():190. PubMed ID: 23758891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A spatial simulation approach to account for protein structure when identifying non-random somatic mutations.
    Ryslik GA; Cheng Y; Cheung KH; Bjornson RD; Zelterman D; Modis Y; Zhao H
    BMC Bioinformatics; 2014 Jul; 15():231. PubMed ID: 24990767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leveraging protein quaternary structure to identify oncogenic driver mutations.
    Ryslik GA; Cheng Y; Modis Y; Zhao H
    BMC Bioinformatics; 2016 Mar; 17():137. PubMed ID: 27001666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical method on nonrandom clustering with application to somatic mutations in cancer.
    Ye J; Pavlicek A; Lunney EA; Rejto PA; Teng CH
    BMC Bioinformatics; 2010 Jan; 11():11. PubMed ID: 20053295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LowMACA: exploiting protein family analysis for the identification of rare driver mutations in cancer.
    Melloni GE; de Pretis S; Riva L; Pelizzola M; Céol A; Costanza J; Müller H; Zammataro L
    BMC Bioinformatics; 2016 Feb; 17():80. PubMed ID: 26860319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Driver gene mutations based clustering of tumors: methods and applications.
    Zhang W; Flemington EK; Zhang K
    Bioinformatics; 2018 Jul; 34(13):i404-i411. PubMed ID: 29950003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. OncodriveCLUST: exploiting the positional clustering of somatic mutations to identify cancer genes.
    Tamborero D; Gonzalez-Perez A; Lopez-Bigas N
    Bioinformatics; 2013 Sep; 29(18):2238-44. PubMed ID: 23884480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein domain-level landscape of cancer-type-specific somatic mutations.
    Yang F; Petsalaki E; Rolland T; Hill DE; Vidal M; Roth FP
    PLoS Comput Biol; 2015 Mar; 11(3):e1004147. PubMed ID: 25794154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. mutation3D: Cancer Gene Prediction Through Atomic Clustering of Coding Variants in the Structural Proteome.
    Meyer MJ; Lapcevic R; Romero AE; Yoon M; Das J; Beltrán JF; Mort M; Stenson PD; Cooper DN; Paccanaro A; Yu H
    Hum Mutat; 2016 May; 37(5):447-56. PubMed ID: 26841357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiplicity: an organizing principle for cancers and somatic mutations.
    Frey LJ; Piccolo SR; Edgerton ME
    BMC Med Genomics; 2011 Jun; 4():52. PubMed ID: 21714919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiscale mutation clustering algorithm identifies pan-cancer mutational clusters associated with pathway-level changes in gene expression.
    Poole W; Leinonen K; Shmulevich I; Knijnenburg TA; Bernard B
    PLoS Comput Biol; 2017 Feb; 13(2):e1005347. PubMed ID: 28170390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Cancer Driver Modules Based on Graph Clustering from Multiomics Data.
    Zhang W; Wang SL; Liu Y
    J Comput Biol; 2021 Oct; 28(10):1007-1020. PubMed ID: 34529511
    [No Abstract]   [Full Text] [Related]  

  • 14. SomInaClust: detection of cancer genes based on somatic mutation patterns of inactivation and clustering.
    Van den Eynden J; Fierro AC; Verbeke LP; Marchal K
    BMC Bioinformatics; 2015 Apr; 16():125. PubMed ID: 25903787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pan-cancer integrative analysis of whole-genome De novo somatic point mutations reveals 17 cancer types.
    Ghareyazi A; Kazemi A; Hamidieh K; Dashti H; Tahaei MS; Rabiee HR; Alinejad-Rokny H; Dehzangi I
    BMC Bioinformatics; 2022 Jul; 23(1):298. PubMed ID: 35879674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new machine learning method for cancer mutation analysis.
    Habibi M; Taheri G
    PLoS Comput Biol; 2022 Oct; 18(10):e1010332. PubMed ID: 36251702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Testing clonal relatedness of two tumors from the same patient based on their mutational profiles: update of the Clonality R package.
    Mauguen A; Seshan VE; Begg CB; Ostrovnaya I
    Bioinformatics; 2019 Nov; 35(22):4776-4778. PubMed ID: 31198957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine Learning Classification and Structure-Functional Analysis of Cancer Mutations Reveal Unique Dynamic and Network Signatures of Driver Sites in Oncogenes and Tumor Suppressor Genes.
    Agajanian S; Odeyemi O; Bischoff N; Ratra S; Verkhivker GM
    J Chem Inf Model; 2018 Oct; 58(10):2131-2150. PubMed ID: 30253099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Current topics in mutations in the cancer genome].
    Iwaya T; Mimori K; Wakabayashi G
    Nihon Geka Gakkai Zasshi; 2012 Mar; 113(2):185-90. PubMed ID: 22582578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of different functional prediction scores using a gene-based permutation model for identifying cancer driver genes.
    Nono AD; Chen K; Liu X
    BMC Med Genomics; 2019 Jan; 12(Suppl 1):22. PubMed ID: 30704472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.