These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 2466989)
1. Intrinsic determinants of firing pattern in Purkinje cells of the turtle cerebellum in vitro. Hounsgaard J; Midtgaard J J Physiol; 1988 Aug; 402():731-49. PubMed ID: 2466989 [TBL] [Abstract][Full Text] [Related]
2. Effects of electric fields on transmembrane potential and excitability of turtle cerebellar Purkinje cells in vitro. Chan CY; Hounsgaard J; Nicholson C J Physiol; 1988 Aug; 402():751-71. PubMed ID: 3236254 [TBL] [Abstract][Full Text] [Related]
3. Spatial distribution of Ca2+ influx in turtle Purkinje cell dendrites in vitro: role of a transient outward current. Midtgaard J; Lasser-Ross N; Ross WN J Neurophysiol; 1993 Dec; 70(6):2455-69. PubMed ID: 8120593 [TBL] [Abstract][Full Text] [Related]
4. Iberiotoxin-sensitive large conductance Ca2+ -dependent K+ (BK) channels regulate the spike configuration in the burst firing of cerebellar Purkinje neurons. Haghdoost-Yazdi H; Janahmadi M; Behzadi G Brain Res; 2008 May; 1212():1-8. PubMed ID: 18439989 [TBL] [Abstract][Full Text] [Related]
5. An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice. De Schutter E; Bower JM J Neurophysiol; 1994 Jan; 71(1):375-400. PubMed ID: 7512629 [TBL] [Abstract][Full Text] [Related]
6. Potassium accumulation around individual purkinje cells in cerebellar slices from the guinea-pig. Hounsgaard J; Nicholson C J Physiol; 1983 Jul; 340():359-88. PubMed ID: 6887054 [TBL] [Abstract][Full Text] [Related]
8. Tetrodotoxin induced calcium spikes: in vitro and in vivo studies of normal and deafferented Purkinje cells. Aubry A; Batini C; Billard JM; Kado RT; Morain P Exp Brain Res; 1991; 84(2):297-302. PubMed ID: 2065736 [TBL] [Abstract][Full Text] [Related]
9. Synaptic control of excitability in turtle cerebellar Purkinje cells. Hounsgaard J; Midtgaard J J Physiol; 1989 Feb; 409():157-70. PubMed ID: 2585289 [TBL] [Abstract][Full Text] [Related]
10. Spatial distribution of synaptically activated sodium concentration changes in cerebellar Purkinje neurons. Callaway JC; Ross WN J Neurophysiol; 1997 Jan; 77(1):145-52. PubMed ID: 9120555 [TBL] [Abstract][Full Text] [Related]
11. Low-threshold potassium channels and a low-threshold calcium channel regulate Ca2+ spike firing in the dendrites of cerebellar Purkinje neurons: a modeling study. Miyasho T; Takagi H; Suzuki H; Watanabe S; Inoue M; Kudo Y; Miyakawa H Brain Res; 2001 Feb; 891(1-2):106-15. PubMed ID: 11164813 [TBL] [Abstract][Full Text] [Related]
12. Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. Llinás R; Sugimori M J Physiol; 1980 Aug; 305():197-213. PubMed ID: 7441553 [TBL] [Abstract][Full Text] [Related]
13. Compartmental model of vertebrate motoneurons for Ca2+-dependent spiking and plateau potentials under pharmacological treatment. Booth V; Rinzel J; Kiehn O J Neurophysiol; 1997 Dec; 78(6):3371-85. PubMed ID: 9405551 [TBL] [Abstract][Full Text] [Related]
14. Mechanisms for signal transformation in lemniscal auditory thalamus. Tennigkeit F; Schwarz DW; Puil E J Neurophysiol; 1996 Dec; 76(6):3597-608. PubMed ID: 8985860 [TBL] [Abstract][Full Text] [Related]
15. Mapping calcium transients in the dendrites of Purkinje cells from the guinea-pig cerebellum in vitro. Ross WN; Werman R J Physiol; 1987 Aug; 389():319-36. PubMed ID: 3681730 [TBL] [Abstract][Full Text] [Related]
16. Synaptic integration in a model of cerebellar granule cells. Gabbiani F; Midtgaard J; Knöpfel T J Neurophysiol; 1994 Aug; 72(2):999-1009. PubMed ID: 7527078 [TBL] [Abstract][Full Text] [Related]