These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 24670007)

  • 21. Self-assembly of palladium nanoparticles on periodic mesoporous organosilica using an in situ reduction approach: catalysts for ullmann reactions in water.
    Zhang F; Yin J; Chai W; Li H
    ChemSusChem; 2010 Jun; 3(6):724-7. PubMed ID: 20432500
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Newly developed stepwise electroless deposition enables a remarkably facile synthesis of highly active and stable amorphous Pd nanoparticle electrocatalysts for oxygen reduction reaction.
    Poon KC; Tan DC; Vo TD; Khezri B; Su H; Webster RD; Sato H
    J Am Chem Soc; 2014 Apr; 136(14):5217-20. PubMed ID: 24661048
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Catalytic and electrocatalytic oxidation of ethanol over palladium-based nanoalloy catalysts.
    Yin J; Shan S; Ng MS; Yang L; Mott D; Fang W; Kang N; Luo J; Zhong CJ
    Langmuir; 2013 Jul; 29(29):9249-58. PubMed ID: 23841935
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening?
    Hansen TW; Delariva AT; Challa SR; Datye AK
    Acc Chem Res; 2013 Aug; 46(8):1720-30. PubMed ID: 23634641
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomimetic synthesis of Pd nanocatalysts for the Stille coupling reaction.
    Pacardo DB; Sethi M; Jones SE; Naik RR; Knecht MR
    ACS Nano; 2009 May; 3(5):1288-96. PubMed ID: 19422199
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stability issues in Pd-based catalysts: the role of surface Pt in improving the stability and oxygen reduction reaction (ORR) activity.
    Singh RK; Rahul R; Neergat M
    Phys Chem Chem Phys; 2013 Aug; 15(31):13044-51. PubMed ID: 23817297
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel embedded Pd@CeO(2) catalysts: a way to active and stable catalysts.
    Cargnello M; Montini T; Polizzi S; Wieder NL; Gorte RJ; Graziani M; Fornasiero P
    Dalton Trans; 2010 Feb; 39(8):2122-7. PubMed ID: 20148232
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Facile synthesis of Ag@Pd satellites-Fe3O4 core nanocomposites as efficient and reusable hydrogenation catalysts.
    Jiang K; Zhang HX; Yang YY; Mothes R; Lang H; Cai WB
    Chem Commun (Camb); 2011 Nov; 47(43):11924-6. PubMed ID: 21975908
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preparation of supported Pd catalysts: from the Pd precursor solution to the deposited Pd2+ phase.
    Agostini G; Groppo E; Piovano A; Pellegrini R; Leofanti G; Lamberti C
    Langmuir; 2010 Jul; 26(13):11204-11. PubMed ID: 20408525
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A facile synthesis-fabrication strategy for integration of catalytically active viral-palladium nanostructures into polymeric hydrogel microparticles via replica molding.
    Yang C; Choi CH; Lee CS; Yi H
    ACS Nano; 2013 Jun; 7(6):5032-44. PubMed ID: 23701179
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spongelike nanoporous Pd and Pd/Au structures: facile synthesis and enhanced electrocatalytic activity.
    Son J; Cho S; Lee C; Lee Y; Shim JH
    Langmuir; 2014 Apr; 30(12):3579-88. PubMed ID: 24617746
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of promoter on the catalytic activity of high performance Pd/PATP catalysts.
    Han W; Zhang P; Pan X; Tang Z; Lu G
    J Hazard Mater; 2013 Dec; 263 Pt 2():299-306. PubMed ID: 24225591
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lattice-matched bimetallic CuPd-graphene nanocatalysts for facile conversion of biomass-derived polyols to chemicals.
    Jin X; Dang L; Lohrman J; Subramaniam B; Ren S; Chaudhari RV
    ACS Nano; 2013 Feb; 7(2):1309-16. PubMed ID: 23297693
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Resolving catalytic phenomena with scanning tunnelling microscopy.
    Bowker M
    Phys Chem Chem Phys; 2007 Jul; 9(27):3514-21. PubMed ID: 17612718
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Graphene-supported ultrafine metal nanoparticles encapsulated by mesoporous silica: robust catalysts for oxidation and reduction reactions.
    Shang L; Bian T; Zhang B; Zhang D; Wu LZ; Tung CH; Yin Y; Zhang T
    Angew Chem Int Ed Engl; 2014 Jan; 53(1):250-4. PubMed ID: 24288240
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mo-modified Pd/Al₂O₃ catalysts for benzene catalytic combustion.
    He Z; He Z; Wang D; Bo Q; Fan T; Jiang Y
    J Environ Sci (China); 2014 Jul; 26(7):1481-7. PubMed ID: 25079997
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Activating Pd by morphology tailoring for oxygen reduction.
    Xiao L; Zhuang L; Liu Y; Lu J; Abruña HD
    J Am Chem Soc; 2009 Jan; 131(2):602-8. PubMed ID: 19108685
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Core/shell Pd/FePt nanoparticles as an active and durable catalyst for the oxygen reduction reaction.
    Mazumder V; Chi M; More KL; Sun S
    J Am Chem Soc; 2010 Jun; 132(23):7848-9. PubMed ID: 20496893
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of ZrO2 properties on catalytic hydrodechlorination of chlorobenzene over Pd/ZrO2 catalysts.
    Shao Y; Xu Z; Wan H; Chen H; Liu F; Li L; Zheng S
    J Hazard Mater; 2010 Jul; 179(1-3):135-40. PubMed ID: 20303664
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ligand-assisted preparation of highly active and stable nanometric Pd confined catalysts for deep catalytic oxidation of toluene.
    He C; Li P; Wang H; Cheng J; Zhang X; Wang Y; Hao Z
    J Hazard Mater; 2010 Sep; 181(1-3):996-1003. PubMed ID: 20541863
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.