These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 24670058)

  • 1. Glutathione-capped gold nanoclusters as photosensitizers. Visible light-induced hydrogen generation in neutral water.
    Chen YS; Kamat PV
    J Am Chem Soc; 2014 Apr; 136(16):6075-82. PubMed ID: 24670058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-cluster-decorated TiO2 nanotube arrays: a composite heterostructure toward versatile photocatalytic and photoelectrochemical applications.
    Xiao FX; Hung SF; Miao J; Wang HY; Yang H; Liu B
    Small; 2015 Feb; 11(5):554-67. PubMed ID: 25244045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boosting the Photovoltage of Dye-Sensitized Solar Cells with Thiolated Gold Nanoclusters.
    Choi H; Chen YS; Stamplecoskie KG; Kamat PV
    J Phys Chem Lett; 2015 Jan; 6(1):217-23. PubMed ID: 26263116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of the efficiency of photocatalytic reduction of protons to hydrogen via molecular assembly.
    Wu LZ; Chen B; Li ZJ; Tung CH
    Acc Chem Res; 2014 Jul; 47(7):2177-85. PubMed ID: 24873498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Faceted titania nanocrystals doped with indium oxide nanoclusters as a superior candidate for sacrificial hydrogen evolution without any noble-metal cocatalyst under solar irradiation.
    Amoli V; Sibi MG; Banerjee B; Anand M; Maurya A; Farooqui SA; Bhaumik A; Sinha AK
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):810-22. PubMed ID: 25490530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visible light driven water splitting in a molecular device with unprecedentedly high photocurrent density.
    Gao Y; Ding X; Liu J; Wang L; Lu Z; Li L; Sun L
    J Am Chem Soc; 2013 Mar; 135(11):4219-22. PubMed ID: 23465192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size-selected TiO₂ nanocluster catalysts for efficient photoelectrochemical water splitting.
    Srivastava S; Thomas JP; Rahman MA; Abd-Ellah M; Mohapatra M; Pradhan D; Heinig NF; Leung KT
    ACS Nano; 2014 Nov; 8(11):11891-8. PubMed ID: 25365773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alloy Metal Nanocluster: A Robust and Stable Photosensitizer for Steering Solar Water Oxidation.
    Wu G; Mo QL; Xiao Y; Wang K; Ge XZ; Xu SR; Li JL; Shao YQ; Xiao FX
    Inorg Chem; 2023 Jan; 62(1):520-529. PubMed ID: 36563080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced fluorescence of gold nanoclusters composed of HAuCl4 and histidine by glutathione: glutathione detection and selective cancer cell imaging.
    Zhang X; Wu FG; Liu P; Gu N; Chen Z
    Small; 2014 Dec; 10(24):5170-7. PubMed ID: 25111498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of an efficient BaTaO2N photoanode harvesting a wide range of visible light for water splitting.
    Higashi M; Domen K; Abe R
    J Am Chem Soc; 2013 Jul; 135(28):10238-41. PubMed ID: 23808352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dendritic Au/TiO₂ nanorod arrays for visible-light driven photoelectrochemical water splitting.
    Su F; Wang T; Lv R; Zhang J; Zhang P; Lu J; Gong J
    Nanoscale; 2013 Oct; 5(19):9001-9. PubMed ID: 23864159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust and Stable Atomically Precise Metal Nanoclusters Mediated Solar Water Splitting.
    Mo QL; Dai XC; Xiao FX
    Small; 2023 Sep; 19(36):e2302372. PubMed ID: 37118858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ etching-induced self-assembly of metal cluster decorated one-dimensional semiconductors for solar-powered water splitting: unraveling cooperative synergy by photoelectrochemical investigations.
    Xiao FX; Liu B
    Nanoscale; 2017 Nov; 9(43):17118-17132. PubMed ID: 29087419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SrNbO2N as a water-splitting photoanode with a wide visible-light absorption band.
    Maeda K; Higashi M; Siritanaratkul B; Abe R; Domen K
    J Am Chem Soc; 2011 Aug; 133(32):12334-7. PubMed ID: 21770436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photosensitization Efficiency Modulation of Atomically Precise Silver Nanoclusters for Photoelectrocatalysis.
    Wei ZQ; Xiao FX
    Inorg Chem; 2023 Apr; 62(15):6138-6146. PubMed ID: 37000131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organic Dye-Sensitized Tandem Photoelectrochemical Cell for Light Driven Total Water Splitting.
    Li F; Fan K; Xu B; Gabrielsson E; Daniel Q; Li L; Sun L
    J Am Chem Soc; 2015 Jul; 137(28):9153-9. PubMed ID: 26132113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmon-enhanced photoelectrochemical water splitting using au nanoparticles decorated on hematite nanoflake arrays.
    Wang L; Zhou X; Nguyen NT; Schmuki P
    ChemSusChem; 2015 Feb; 8(4):618-22. PubMed ID: 25581403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene supported plasmonic photocatalyst for hydrogen evolution in photocatalytic water splitting.
    Singh GP; Shrestha KM; Nepal A; Klabunde KJ; Sorensen CM
    Nanotechnology; 2014 Jul; 25(26):265701. PubMed ID: 24916183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ZnSe Nanorods as Visible-Light Absorbers for Photocatalytic and Photoelectrochemical H
    Kuehnel MF; Creissen CE; Sahm CD; Wielend D; Schlosser A; Orchard KL; Reisner E
    Angew Chem Int Ed Engl; 2019 Apr; 58(15):5059-5063. PubMed ID: 30715778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.