These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

460 related articles for article (PubMed ID: 24670107)

  • 21. Gap surface plasmon polaritons enhanced by a plasmonic lens.
    Chul Kim H; Cheng X
    Opt Lett; 2011 Aug; 36(16):3082-4. PubMed ID: 21847167
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tuning the 3D plasmon field of nanohole arrays.
    Couture M; Liang Y; Poirier Richard HP; Faid R; Peng W; Masson JF
    Nanoscale; 2013 Dec; 5(24):12399-408. PubMed ID: 24162773
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Angle-Resolved Polarimetry with Quasi-Bound States in the Continuum Plasmonic Metamaterials
    Yang Y; Jung W; Hur C; Kim H; Shin J; Choi M; Rho J
    ACS Nano; 2024 May; 18(20):12771-12780. PubMed ID: 38708928
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three-dimensional optical metamaterial with a negative refractive index.
    Valentine J; Zhang S; Zentgraf T; Ulin-Avila E; Genov DA; Bartal G; Zhang X
    Nature; 2008 Sep; 455(7211):376-9. PubMed ID: 18690249
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An ultranarrow SPR linewidth in the UV region for plasmonic sensing.
    Zheng J; Yang W; Wang J; Zhu J; Qian L; Yang Z
    Nanoscale; 2019 Mar; 11(9):4061-4066. PubMed ID: 30776034
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using nanoscale and mesoscale anisotropy to engineer the optical response of three-dimensional plasmonic metamaterials.
    Ross MB; Blaber MG; Schatz GC
    Nat Commun; 2014 Jun; 5():4090. PubMed ID: 24934374
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Magnetic plasmonic Fano resonance at optical frequency.
    Bao Y; Hu Z; Li Z; Zhu X; Fang Z
    Small; 2015 May; 11(18):2177-81. PubMed ID: 25594885
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Magnifying superlenses and other applications of plasmonic metamaterials in microscopy and sensing.
    Smolyaninov II; Davis CC
    Chemphyschem; 2009 Mar; 10(4):625-8. PubMed ID: 19219891
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metasurfaces Atop Metamaterials: Surface Morphology Induces Linear Dichroism in Gyroid Optical Metamaterials.
    Dolan JA; Dehmel R; Demetriadou A; Gu Y; Wiesner U; Wilkinson TD; Gunkel I; Hess O; Baumberg JJ; Steiner U; Saba M; Wilts BD
    Adv Mater; 2019 Jan; 31(2):e1803478. PubMed ID: 30393994
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced bandwidth and reduced dispersion through stacking multiple optical metamaterials.
    Escarra MD; Thongrattanasiri S; Charles WO; Hoffman AJ; Podolskiy VA; Gmachl C
    Opt Express; 2011 Aug; 19(16):14990-8. PubMed ID: 21934860
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plasmon coupling in vertical split-ring resonator metamolecules.
    Wu PC; Hsu WL; Chen WT; Huang YW; Liao CY; Liu AQ; Zheludev NI; Sun G; Tsai DP
    Sci Rep; 2015 Jun; 5():9726. PubMed ID: 26043931
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Compound resonance-induced coupling effects in composite plasmonic metamaterials.
    Farhang A; Ramakrishna SA; Martin OJ
    Opt Express; 2012 Dec; 20(28):29447-56. PubMed ID: 23388771
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Near-infrared surface plasmon polariton dispersion control with hyperbolic metamaterials.
    Luk TS; Kim I; Campione S; Howell SW; Subramania GS; Grubbs RK; Brener I; Chen HT; Fan S; Sinclair MB
    Opt Express; 2013 May; 21(9):11107-14. PubMed ID: 23669967
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Negative Refraction in the Visible and Strong Plasmonic Resonances in Photonic Structures of the Electride Material Mg
    Kim KH; Wi JH; Choe MI
    Chemphyschem; 2020 Jul; 21(14):1541-1547. PubMed ID: 32500574
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solution processed polydimethylsiloxane/gold nanostar flexible substrates for plasmonic sensing.
    Shiohara A; Langer J; Polavarapu L; Liz-Marzán LM
    Nanoscale; 2014 Aug; 6(16):9817-23. PubMed ID: 25027634
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plasmon nanoparticle superlattices as optical-frequency magnetic metamaterials.
    Alaeian H; Dionne JA
    Opt Express; 2012 Jul; 20(14):15781-96. PubMed ID: 22772268
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low-loss hyperbolic dispersion and anisotropic plasmonic excitation in nodal-line semimetallic yttrium nitride.
    Gao H; Sun L; Zhao M
    Opt Express; 2020 Jul; 28(15):22076-22087. PubMed ID: 32752475
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dispersion relation of surface plasmon polaritons in non-local materials.
    Gric T
    Opt Express; 2019 Apr; 27(9):13568-13573. PubMed ID: 31052877
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strong plasmon coupling in self-assembled superparamagnetic nanoshell chains.
    Xiong M; Jin X; Ye J
    Nanoscale; 2016 Mar; 8(9):4991-9. PubMed ID: 26864389
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Negative refraction in semiconductor metamaterials.
    Hoffman AJ; Alekseyev L; Howard SS; Franz KJ; Wasserman D; Podolskiy VA; Narimanov EE; Sivco DL; Gmachl C
    Nat Mater; 2007 Dec; 6(12):946-50. PubMed ID: 17934463
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.