These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 24670115)

  • 1. Real time observation of the formation of hollow nanostructures through solid state reactions.
    Lai HY; Huang CW; Chiu CH; Wang CW; Chen JY; Huang YT; Lu KC; Wu WW
    Anal Chem; 2014 May; 86(9):4348-53. PubMed ID: 24670115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced morphological and thermal stabilities of nickel germanide with an ultrathin tantalum layer studied by ex situ and in situ transmission electron microscopy.
    Lee JW; Kim HK; Bae JH; Park MH; Kim H; Ryu J; Yang CW
    Microsc Microanal; 2013 Aug; 19 Suppl 5():114-8. PubMed ID: 23920187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth and evolution of nickel germanide nanostructures on Ge(001).
    Grzela T; Capellini G; Koczorowski W; Schubert MA; Czajka R; Curson NJ; Heidmann I; Schmidt T; Falta J; Schroeder T
    Nanotechnology; 2015 Sep; 26(38):385701. PubMed ID: 26335383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size-dependent nanoscale kirkendall effect during the oxidation of nickel nanoparticles.
    Railsback JG; Johnston-Peck AC; Wang J; Tracy JB
    ACS Nano; 2010 Apr; 4(4):1913-20. PubMed ID: 20361781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical growth of nickel hollow nanostructures on copper substrates.
    Li GR; Kay LG; Liu GK; Tong YX
    J Phys Chem B; 2005 Dec; 109(49):23300-3. PubMed ID: 16375297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Core-decomposition-facilitated fabrication of hollow rare-earth silicate nanowalnuts from core-shell structures via the Kirkendall effect.
    Zhou W; Zou R; Yang X; Huang N; Huang J; Liang H; Wang J
    Nanoscale; 2015 Aug; 7(32):13715-22. PubMed ID: 26220051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct observation of melting behaviors at the nanoscale under electron beam and heat to form hollow nanostructures.
    Huang CW; Hsin CL; Wang CW; Chu FH; Kao CY; Chen JY; Huang YT; Lu KC; Wu WW; Chen LJ
    Nanoscale; 2012 Aug; 4(15):4702-6. PubMed ID: 22744608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review.
    Fan HJ; Gösele U; Zacharias M
    Small; 2007 Oct; 3(10):1660-71. PubMed ID: 17890644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemically synthesized hollow nanostructures in iron oxides.
    Khurshid H; Li W; Tzitzios V; Hadjipanayis GC
    Nanotechnology; 2011 Jul; 22(26):265605. PubMed ID: 21576787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile fabrication of AgCl@polypyrrole-chitosan core-shell nanoparticles and polymeric hollow nanospheres.
    Cheng D; Xia H; Chan HS
    Langmuir; 2004 Nov; 20(23):9909-12. PubMed ID: 15518472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphological transformation of Co(OH)2 microspheres from solid to flowerlike hollow core-shell structures.
    Qiao R; Zhang XL; Qiu R; Kim JC; Kang YS
    Chemistry; 2009; 15(8):1886-92. PubMed ID: 19132697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic levers enabling independent control of phase, size, and morphology in nickel phosphide nanoparticles.
    Muthuswamy E; Savithra GH; Brock SL
    ACS Nano; 2011 Mar; 5(3):2402-11. PubMed ID: 21381759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic Insight into the Yolk@Shell Transformation of MnO@Silica Nanospheres Incorporating Ni(2+) Ions toward a Colloidal Hollow Nanoreactor.
    Kim JG; Kim SM; Lee IS
    Small; 2015 Apr; 11(16):1930-8. PubMed ID: 25510421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and modeling of hollow intermetallic Ni-Zn nanoparticles formed by the Kirkendall effect.
    Jana S; Chang JW; Rioux RM
    Nano Lett; 2013 Aug; 13(8):3618-25. PubMed ID: 23829182
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Zhu S; Nguyen MT; Tokunaga T; Wen CY; Yonezawa T
    Nanoscale Adv; 2020 Apr; 2(4):1456-1464. PubMed ID: 36132324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and structural and magnetic characterization of Ni(core)/NiO(shell) nanoparticles.
    Johnston-Peck AC; Wang J; Tracy JB
    ACS Nano; 2009 May; 3(5):1077-84. PubMed ID: 19361203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous formation of hollow cobalt oxide nanoparticles by the Kirkendall effect at room temperature at the water-air interface.
    Varón M; Ojea-Jimenez I; Arbiol J; Balcells L; Martínez B; Puntes VF
    Nanoscale; 2013 Mar; 5(6):2429-36. PubMed ID: 23399978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CuGaS2 hollow spheres from Ga-CuS core-shell nanoparticles.
    Cha JH; Jung DY
    Ultrason Sonochem; 2014 May; 21(3):1194-9. PubMed ID: 24365224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of hollow Ni2p nanoparticles based on the nanoscale Kirkendall effect.
    Chiang RK; Chiang RT
    Inorg Chem; 2007 Jan; 46(2):369-71. PubMed ID: 17279811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visible light catalysis-assisted assembly of Ni(h)-QD hollow nanospheres in situ via hydrogen bubbles.
    Li ZJ; Fan XB; Li XB; Li JX; Ye C; Wang JJ; Yu S; Li CB; Gao YJ; Meng QY; Tung CH; Wu LZ
    J Am Chem Soc; 2014 Jun; 136(23):8261-8. PubMed ID: 24835886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.