These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 24670245)

  • 1. Gene circuit performance characterization and resource usage in a cell-free "breadboard".
    Siegal-Gaskins D; Tuza ZA; Kim J; Noireaux V; Murray RM
    ACS Synth Biol; 2014 Jun; 3(6):416-25. PubMed ID: 24670245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linear DNA for rapid prototyping of synthetic biological circuits in an Escherichia coli based TX-TL cell-free system.
    Sun ZZ; Yeung E; Hayes CA; Noireaux V; Murray RM
    ACS Synth Biol; 2014 Jun; 3(6):387-97. PubMed ID: 24303785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An E. coli cell-free expression toolbox: application to synthetic gene circuits and artificial cells.
    Shin J; Noireaux V
    ACS Synth Biol; 2012 Jan; 1(1):29-41. PubMed ID: 23651008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protocols for implementing an Escherichia coli based TX-TL cell-free expression system for synthetic biology.
    Sun ZZ; Hayes CA; Shin J; Caschera F; Murray RM; Noireaux V
    J Vis Exp; 2013 Sep; (79):e50762. PubMed ID: 24084388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene position more strongly influences cell-free protein expression from operons than T7 transcriptional promoter strength.
    Chizzolini F; Forlin M; Cecchi D; Mansy SS
    ACS Synth Biol; 2014 Jun; 3(6):363-71. PubMed ID: 24283192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescent proteins and in vitro genetic organization for cell-free synthetic biology.
    Lentini R; Forlin M; Martini L; Del Bianco C; Spencer AC; Torino D; Mansy SS
    ACS Synth Biol; 2013 Sep; 2(9):482-9. PubMed ID: 23654270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing scaleup yield for protein production: Computationally Optimized DNA Assembly (CODA) and Translation Engineering.
    Hatfield GW; Roth DA
    Biotechnol Annu Rev; 2007; 13():27-42. PubMed ID: 17875472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing and prototyping genetic networks with cell-free transcription-translation reactions.
    Takahashi MK; Hayes CA; Chappell J; Sun ZZ; Murray RM; Noireaux V; Lucks JB
    Methods; 2015 Sep; 86():60-72. PubMed ID: 26022922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The All E. coli TX-TL Toolbox 2.0: A Platform for Cell-Free Synthetic Biology.
    Garamella J; Marshall R; Rustad M; Noireaux V
    ACS Synth Biol; 2016 Apr; 5(4):344-55. PubMed ID: 26818434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Empirical model and in vivo characterization of the bacterial response to synthetic gene expression show that ribosome allocation limits growth rate.
    Carrera J; Rodrigo G; Singh V; Kirov B; Jaramillo A
    Biotechnol J; 2011 Jul; 6(7):773-83. PubMed ID: 21681966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visualization of evolutionary stability dynamics and competitive fitness of Escherichia coli engineered with randomized multigene circuits.
    Sleight SC; Sauro HM
    ACS Synth Biol; 2013 Sep; 2(9):519-28. PubMed ID: 24004180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of the DNA conformation on the rate of NtrC activated transcription of Escherichia coli RNA polymerase.sigma(54) holoenzyme.
    Schulz A; Langowski J; Rippe K
    J Mol Biol; 2000 Jul; 300(4):709-25. PubMed ID: 10891265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell-free extract based optimization of biomolecular circuits with droplet microfluidics.
    Hori Y; Kantak C; Murray RM; Abate AR
    Lab Chip; 2017 Sep; 17(18):3037-3042. PubMed ID: 28770936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antisense transcription as a tool to tune gene expression.
    Brophy JA; Voigt CA
    Mol Syst Biol; 2016 Jan; 12(1):854. PubMed ID: 26769567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A resource dependent protein synthesis model for evaluating synthetic circuits.
    Halter W; Montenbruck JM; Tuza ZA; Allgöwer F
    J Theor Biol; 2017 May; 420():267-278. PubMed ID: 28286216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetic logic circuits using RNA aptamer against T7 RNA polymerase.
    Kim J; Quijano JF; Kim J; Yeung E; Murray RM
    Biotechnol J; 2022 Mar; 17(3):e2000449. PubMed ID: 33813787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering Transcriptional Regulator Effector Specificity Using Computational Design and In Vitro Rapid Prototyping: Developing a Vanillin Sensor.
    de los Santos EL; Meyerowitz JT; Mayo SL; Murray RM
    ACS Synth Biol; 2016 Apr; 5(4):287-95. PubMed ID: 26262913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid cell-free forward engineering of novel genetic ring oscillators.
    Niederholtmeyer H; Sun ZZ; Hori Y; Yeung E; Verpoorte A; Murray RM; Maerkl SJ
    Elife; 2015 Oct; 4():e09771. PubMed ID: 26430766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resource Reallocation in Bacteria by Reengineering the Gene Expression Machinery.
    de Jong H; Geiselmann J; Ropers D
    Trends Microbiol; 2017 Jun; 25(6):480-493. PubMed ID: 28110800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aromatic amino acids in region 2.3 of Escherichia coli sigma 70 participate collectively in the formation of an RNA polymerase-promoter open complex.
    Panaghie G; Aiyar SE; Bobb KL; Hayward RS; de Haseth PL
    J Mol Biol; 2000 Jun; 299(5):1217-30. PubMed ID: 10873447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.