These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 24670669)

  • 1. Broadband and crack-free antireflection coatings by self-assembled moth eye patterns.
    Galeotti F; Trespidi F; Timò G; Pasini M
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5827-34. PubMed ID: 24670669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal moth eye nanostructure array on transparent glass towards broadband antireflection.
    Ji S; Song K; Nguyen TB; Kim N; Lim H
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10731-7. PubMed ID: 24116953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning.
    Ji S; Park J; Lim H
    Nanoscale; 2012 Aug; 4(15):4603-10. PubMed ID: 22706661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced power generation in concentrated photovoltaics using broadband antireflective coverglasses with moth eye structures.
    Song YM; Jeong Y; Yeo CI; Lee YT
    Opt Express; 2012 Nov; 20(23):A916-23. PubMed ID: 23326839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures.
    Huang YF; Chattopadhyay S; Jen YJ; Peng CY; Liu TA; Hsu YK; Pan CL; Lo HC; Hsu CH; Chang YH; Lee CS; Chen KH; Chen LC
    Nat Nanotechnol; 2007 Dec; 2(12):770-4. PubMed ID: 18654429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced broadband and omni-directional performance of polycrystalline Si solar cells by using discrete multilayer antireflection coatings.
    Oh SJ; Chhajed S; Poxson DJ; Cho J; Schubert EF; Tark SJ; Kim D; Kim JK
    Opt Express; 2013 Jan; 21 Suppl 1():A157-66. PubMed ID: 23389267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanofabrication of broad-band antireflective surfaces using self-assembly of block copolymers.
    Päivänranta B; Sahoo PK; Tocce E; Auzelyte V; Ekinci Y; Solak HH; Liu CC; Stuen KO; Nealey PF; David C
    ACS Nano; 2011 Mar; 5(3):1860-4. PubMed ID: 21323325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement in broadband and quasi-omnidirectional antireflection of nanopillar arrays by ion milling.
    Huang Z; Hawkeye MM; Brett MJ
    Nanotechnology; 2012 Jul; 23(27):275703. PubMed ID: 22705498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization and continuous fabrication of moth-eye nanostructure array on flexible polyethylene terephthalate substrate towards broadband antireflection.
    Zhang C; Yi P; Peng L; Ni J
    Appl Opt; 2017 Apr; 56(10):2901-2907. PubMed ID: 28375259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of broadband antireflective plasmonic gold nanocone arrays on flexible polymer films.
    Toma M; Loget G; Corn RM
    Nano Lett; 2013; 13(12):6164-9. PubMed ID: 24195672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studying nanostructured nipple arrays of moth eye facets helps to design better thin film solar cells.
    Dewan R; Fischer S; Meyer-Rochow VB; Özdemir Y; Hamraz S; Knipp D
    Bioinspir Biomim; 2012 Mar; 7(1):016003. PubMed ID: 22155981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays.
    Park H; Shin D; Kang G; Baek S; Kim K; Padilla WJ
    Adv Mater; 2011 Dec; 23(48):5796-800. PubMed ID: 22116618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadband antireflection coating covering from visible to near infrared wavelengths by using multilayered nanoporous block copolymer films.
    Joo W; Kim HJ; Kim JK
    Langmuir; 2010 Apr; 26(7):5110-4. PubMed ID: 19957944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antireflective "moth-eye" structures on tunable optical silicone membranes.
    Brunner R; Keil B; Morhard C; Lehr D; Draheim J; Wallrabe U; Spatz J
    Appl Opt; 2012 Jul; 51(19):4370-6. PubMed ID: 22772109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alternative moth-eye nanostructures: antireflective properties and composition of dimpled corneal nanocoatings in silk-moth ancestors.
    Kryuchkov M; Lehmann J; Schaab J; Cherepanov V; Blagodatski A; Fiebig M; Katanaev VL
    J Nanobiotechnology; 2017 Sep; 15(1):61. PubMed ID: 28877691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porous anodic alumina with low refractive index for broadband graded-index antireflection coatings.
    Chen J; Wang B; Yang Y; Shi Y; Xu G; Cui P
    Appl Opt; 2012 Oct; 51(28):6839-43. PubMed ID: 23033100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermally stable antireflective coatings based on nanoporous organosilicate thin films.
    Kim S; Cho J; Char K
    Langmuir; 2007 Jun; 23(12):6737-43. PubMed ID: 17477553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Al
    Khan SB; Wu H; Xie Z; Wang W; Zhang Z
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):36327-36337. PubMed ID: 28956908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Double-Sided, Omnidirectional γ-AlOOH Hierarchical Nanostructures: Imparting Enhanced Antireflective Properties with Self-Cleaning Capacity for Optical Devices.
    Halan Joghee S; Uthandi KM; Singh N; Katti S; Kumar P; Kaur MP; Pullithadathil B
    Langmuir; 2021 Jun; 37(23):6953-6966. PubMed ID: 34060322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic Moth-eye Nanofabrication: Enhanced Antireflection with Superior Self-cleaning Characteristic.
    Sun J; Wang X; Wu J; Jiang C; Shen J; Cooper MA; Zheng X; Liu Y; Yang Z; Wu D
    Sci Rep; 2018 Apr; 8(1):5438. PubMed ID: 29615712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.