These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 24670679)

  • 1. Improved performance of graphene transistors by strain engineering.
    Nguyen VH; Nguyen HV; Dollfus P
    Nanotechnology; 2014 Apr; 25(16):165201. PubMed ID: 24670679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Top-gated graphene field-effect transistors with high normalized transconductance and designable dirac point voltage.
    Xu H; Zhang Z; Xu H; Wang Z; Wang S; Peng LM
    ACS Nano; 2011 Jun; 5(6):5031-7. PubMed ID: 21528892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current saturation in submicrometer graphene transistors with thin gate dielectric: experiment, simulation, and theory.
    Han SJ; Reddy D; Carpenter GD; Franklin AD; Jenkins KA
    ACS Nano; 2012 Jun; 6(6):5220-6. PubMed ID: 22582702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear current-voltage characteristics and enhanced negative differential conductance in graphene field effect transistors.
    Wang L; Chen X; Hu Y; Yu A; Lu W
    Nanoscale; 2014 Nov; 6(21):12769-79. PubMed ID: 25224726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical study of the source-drain current and gate leakage current to understand the graphene field-effect transistors.
    Yu C; Liu H; Ni W; Gao N; Zhao J; Zhang H
    Phys Chem Chem Phys; 2011 Feb; 13(8):3461-7. PubMed ID: 21240394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite size effects on the gate leakage current in graphene nanoribbon field-effect transistors.
    Mao LF
    Nanotechnology; 2009 Jul; 20(27):275203. PubMed ID: 19528675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controllable chemical vapor deposition growth of few layer graphene for electronic devices.
    Wei D; Wu B; Guo Y; Yu G; Liu Y
    Acc Chem Res; 2013 Jan; 46(1):106-15. PubMed ID: 22809220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-frequency graphene voltage amplifier.
    Han SJ; Jenkins KA; Valdes Garcia A; Franklin AD; Bol AA; Haensch W
    Nano Lett; 2011 Sep; 11(9):3690-3. PubMed ID: 21805988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-aligned fabrication of graphene RF transistors with T-shaped gate.
    Badmaev A; Che Y; Li Z; Wang C; Zhou C
    ACS Nano; 2012 Apr; 6(4):3371-6. PubMed ID: 22404336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controllable electrical properties of metal-doped In2O3 nanowires for high-performance enhancement-mode transistors.
    Zou X; Liu X; Wang C; Jiang Y; Wang Y; Xiao X; Ho JC; Li J; Jiang C; Xiong Q; Liao L
    ACS Nano; 2013 Jan; 7(1):804-10. PubMed ID: 23228028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved Drain Current Saturation and Voltage Gain in Graphene-on-Silicon Field Effect Transistors.
    Song SM; Bong JH; Hwang WS; Cho BJ
    Sci Rep; 2016 May; 6():25392. PubMed ID: 27142861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures.
    Lee GH; Yu YJ; Cui X; Petrone N; Lee CH; Choi MS; Lee DY; Lee C; Yoo WJ; Watanabe K; Taniguchi T; Nuckolls C; Kim P; Hone J
    ACS Nano; 2013 Sep; 7(9):7931-6. PubMed ID: 23924287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene nanomesh-based devices exhibiting a strong negative differential conductance effect.
    Nguyen VH; Mazzamuto F; Saint-Martin J; Bournel A; Dollfus P
    Nanotechnology; 2012 Feb; 23(6):065201. PubMed ID: 22249029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Black phosphorus radio-frequency transistors.
    Wang H; Wang X; Xia F; Wang L; Jiang H; Xia Q; Chin ML; Dubey M; Han SJ
    Nano Lett; 2014 Nov; 14(11):6424-9. PubMed ID: 25347787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced logic performance with semiconducting bilayer graphene channels.
    Li SL; Miyazaki H; Hiura H; Liu C; Tsukagoshi K
    ACS Nano; 2011 Jan; 5(1):500-6. PubMed ID: 21158484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transformation of the electrical characteristics of graphene field-effect transistors with fluoropolymer.
    Ha TJ; Lee J; Chowdhury SF; Akinwande D; Rossky PJ; Dodabalapur A
    ACS Appl Mater Interfaces; 2013 Jan; 5(1):16-20. PubMed ID: 23252452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strain-induced conduction gap in vertical devices made of misoriented graphene layers.
    Nguyen VH; Nguyen HV; Saint-Martin J; Dollfus P
    Nanotechnology; 2015 Mar; 26(11):115201. PubMed ID: 25709081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible Graphene Field-Effect Transistors Encapsulated in Hexagonal Boron Nitride.
    Petrone N; Chari T; Meric I; Wang L; Shepard KL; Hone J
    ACS Nano; 2015 Sep; 9(9):8953-9. PubMed ID: 26261867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature.
    Xia F; Farmer DB; Lin YM; Avouris P
    Nano Lett; 2010 Feb; 10(2):715-8. PubMed ID: 20092332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sub-10 nm gate length graphene transistors: operating at terahertz frequencies with current saturation.
    Zheng J; Wang L; Quhe R; Liu Q; Li H; Yu D; Mei WN; Shi J; Gao Z; Lu J
    Sci Rep; 2013; 3():1314. PubMed ID: 23419782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.