BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 24671046)

  • 1. Endodermal differentiation of human pluripotent stem cells to insulin-producing cells in 3D culture.
    Takeuchi H; Nakatsuji N; Suemori H
    Sci Rep; 2014 Mar; 4():4488. PubMed ID: 24671046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small molecules induce efficient differentiation into insulin-producing cells from human induced pluripotent stem cells.
    Kunisada Y; Tsubooka-Yamazoe N; Shoji M; Hosoya M
    Stem Cell Res; 2012 Mar; 8(2):274-84. PubMed ID: 22056147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Vitro Differentiation of Pluripotent Stem Cells into Functional β Islets Under 2D and 3D Culture Conditions and In Vivo Preclinical Validation of 3D Islets.
    Bose B; Sudheer PS
    Methods Mol Biol; 2016; 1341():257-84. PubMed ID: 25783769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-culture with mature islet cells augments the differentiation of insulin-producing cells from pluripotent stem cells.
    Oh BJ; Oh SH; Choi JM; Jin SM; Shim WY; Lee MS; Lee MK; Kim KW; Kim JH
    Stem Cell Rev Rep; 2015 Feb; 11(1):62-74. PubMed ID: 25173880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced differentiation of human pluripotent stem cells into pancreatic progenitors co-expressing PDX1 and NKX6.1.
    Memon B; Karam M; Al-Khawaga S; Abdelalim EM
    Stem Cell Res Ther; 2018 Jan; 9(1):15. PubMed ID: 29361979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directed differentiation of human iPSC into insulin producing cells is improved by induced expression of PDX1 and NKX6.1 factors in IPC progenitors.
    Walczak MP; Drozd AM; Stoczynska-Fidelus E; Rieske P; Grzela DP
    J Transl Med; 2016 Dec; 14(1):341. PubMed ID: 27998294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insulin-producing cells derived from human embryonic stem cells: comparison of definitive endoderm- and nestin-positive progenitor-based differentiation strategies.
    Wei R; Yang J; Hou W; Liu G; Gao M; Zhang L; Wang H; Mao G; Gao H; Chen G; Hong T
    PLoS One; 2013; 8(8):e72513. PubMed ID: 23951327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differentiation and lineage commitment of murine embryonic stem cells into insulin producing cells.
    Raikwar SP; Zavazava N
    Methods Mol Biol; 2013; 1029():93-108. PubMed ID: 23756944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of pancreatic progenitors from human pluripotent stem cells by small molecules.
    Jiang Y; Chen C; Randolph LN; Ye S; Zhang X; Bao X; Lian XL
    Stem Cell Reports; 2021 Sep; 16(9):2395-2409. PubMed ID: 34450037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developing a Cost-Effective and Scalable Production of Human Hepatic Competent Endoderm from Size-Controlled Pluripotent Stem Cell Aggregates.
    Farzaneh Z; Najarasl M; Abbasalizadeh S; Vosough M; Baharvand H
    Stem Cells Dev; 2018 Feb; 27(4):262-274. PubMed ID: 29298619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microporous scaffolds support assembly and differentiation of pancreatic progenitors into β-cell clusters.
    Youngblood RL; Sampson JP; Lebioda KR; Shea LD
    Acta Biomater; 2019 Sep; 96():111-122. PubMed ID: 31247380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient generation of functional pancreatic β-cells from human induced pluripotent stem cells.
    Yabe SG; Fukuda S; Takeda F; Nashiro K; Shimoda M; Okochi H
    J Diabetes; 2017 Feb; 9(2):168-179. PubMed ID: 27038181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Differentiation of Pluripotent Stem Cells to NKX6-1+ Pancreatic Progenitors.
    McGaugh EC; Nostro MC
    J Vis Exp; 2017 Mar; (121):. PubMed ID: 28362406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endodermal stem cell populations derived from pluripotent stem cells.
    Cheng X; Tiyaboonchai A; Gadue P
    Curr Opin Cell Biol; 2013 Apr; 25(2):265-71. PubMed ID: 23452824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of Insulin-Producing Cells From Human-Induced Pluripotent Stem Cells Using a Stepwise Differentiation Protocol Optimized With Platelet-Rich Plasma.
    Enderami SE; Mortazavi Y; Soleimani M; Nadri S; Biglari A; Mansour RN
    J Cell Physiol; 2017 Oct; 232(10):2878-2886. PubMed ID: 27925205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient differentiation of mouse embryonic stem cells into insulin-producing cells.
    Liu SH; Lee LT
    Exp Diabetes Res; 2012; 2012():201295. PubMed ID: 22919367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transplantation of insulin-producing cells differentiated from human periosteum-derived progenitor cells ameliorate hyperglycemia in diabetic mice.
    Dao LT; Park EY; Lim SM; Choi YS; Jung HS; Jun HS
    Transplantation; 2014 Nov; 98(10):1040-7. PubMed ID: 25208321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High oxygen condition facilitates the differentiation of mouse and human pluripotent stem cells into pancreatic progenitors and insulin-producing cells.
    Hakim F; Kaitsuka T; Raeed JM; Wei FY; Shiraki N; Akagi T; Yokota T; Kume S; Tomizawa K
    J Biol Chem; 2014 Apr; 289(14):9623-38. PubMed ID: 24554704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting the cytoskeleton to direct pancreatic differentiation of human pluripotent stem cells.
    Hogrebe NJ; Augsornworawat P; Maxwell KG; Velazco-Cruz L; Millman JR
    Nat Biotechnol; 2020 Apr; 38(4):460-470. PubMed ID: 32094658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An arduous journey from human pluripotent stem cells to functional pancreatic β cells.
    Loo LSW; Lau HH; Jasmen JB; Lim CS; Teo AKK
    Diabetes Obes Metab; 2018 Jan; 20(1):3-13. PubMed ID: 28474496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.