These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 24671439)

  • 1. Solid state chemistry of nitrogen oxides--part II: surface consumption of NO2.
    Ioppolo S; Fedoseev G; Minissale M; Congiu E; Dulieu F; Linnartz H
    Phys Chem Chem Phys; 2014 May; 16(18):8270-82. PubMed ID: 24671439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solid state chemistry of nitrogen oxides--part I: surface consumption of NO.
    Minissale M; Fedoseev G; Congiu E; Ioppolo S; Dulieu F; Linnartz H
    Phys Chem Chem Phys; 2014 May; 16(18):8257-69. PubMed ID: 24671412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of Hydroxylamine in Low-Temperature Interstellar Model Ices.
    Tsegaw YA; Góbi S; Förstel M; Maksyutenko P; Sander W; Kaiser RI
    J Phys Chem A; 2017 Oct; 121(40):7477-7493. PubMed ID: 28892389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SURFRESIDE(2): an ultrahigh vacuum system for the investigation of surface reaction routes of interstellar interest.
    Ioppolo S; Fedoseev G; Lamberts T; Romanzin C; Linnartz H
    Rev Sci Instrum; 2013 Jul; 84(7):073112. PubMed ID: 23902049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water formation at low temperatures by surface O2 hydrogenation II: The reaction network.
    Cuppen HM; Ioppolo S; Romanzin C; Linnartz H
    Phys Chem Chem Phys; 2010 Oct; 12(38):12077-88. PubMed ID: 20697615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient surface formation route of interstellar hydroxylamine through NO hydrogenation. I. The submonolayer regime on interstellar relevant substrates.
    Congiu E; Chaabouni H; Laffon C; Parent P; Baouche S; Dulieu F
    J Chem Phys; 2012 Aug; 137(5):054713. PubMed ID: 22894377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient surface formation route of interstellar hydroxylamine through NO hydrogenation. II. The multilayer regime in interstellar relevant ices.
    Fedoseev G; Ioppolo S; Lamberts T; Zhen JF; Cuppen HM; Linnartz H
    J Chem Phys; 2012 Aug; 137(5):054714. PubMed ID: 22894378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water formation at low temperatures by surface O2 hydrogenation I: Characterization of ice penetration.
    Ioppolo S; Cuppen HM; Romanzin C; van Dishoeck EF; Linnartz H
    Phys Chem Chem Phys; 2010 Oct; 12(38):12065-76. PubMed ID: 20697614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water formation by surface O3 hydrogenation.
    Romanzin C; Ioppolo S; Cuppen HM; van Dishoeck EF; Linnartz H
    J Chem Phys; 2011 Feb; 134(8):084504. PubMed ID: 21361548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-catalyzed chlorine and nitrogen activation: mechanisms for the heterogeneous formation of ClNO, NO, NO2, HONO, and N2O from HNO3 and HCl on aluminum oxide particle surfaces.
    Rubasinghege G; Grassian VH
    J Phys Chem A; 2012 May; 116(21):5180-92. PubMed ID: 22536987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of oxygen chemistry on model interstellar grain surfaces.
    Rosu-Finsen A; McCoustra MRS
    Phys Chem Chem Phys; 2018 Feb; 20(8):5368-5376. PubMed ID: 28956031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface chemistry of CN bond formation from carbon and nitrogen atoms on Pt(111).
    Herceg E; Trenary M
    J Phys Chem B; 2005 Sep; 109(37):17560-6. PubMed ID: 16853246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water formation at low temperatures by surface O2 hydrogenation III: Monte Carlo simulation.
    Lamberts T; Cuppen HM; Ioppolo S; Linnartz H
    Phys Chem Chem Phys; 2013 Jun; 15(21):8287-302. PubMed ID: 23615955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitric oxide interaction with oxy-coboglobin models containing trans-pyridine ligand: two reaction pathways.
    Kurtikyan TS; Eksuzyan SR; Goodwin JA; Hovhannisyan GSh
    Inorg Chem; 2013 Oct; 52(20):12046-56. PubMed ID: 24090349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface science investigations of the role of CO₂ in astrophysical ices.
    Edridge JL; Freimann K; Burke DJ; Brown WA
    Philos Trans A Math Phys Eng Sci; 2013 Jul; 371(1994):20110578. PubMed ID: 23734046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Infrared Spectroscopic Study on Swift-Ion Irradiation of Solid N
    Bergantini A; de Barros ALF; Toribio NN; Rothard H; Boduch P; da Silveira EF
    J Phys Chem A; 2022 Mar; 126(12):2007-2017. PubMed ID: 35302766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface photochemistry of bromoform on ice: cross section and competing reaction pathways.
    Grecea ML; Backus EH; Kleyn AW; Bonn M
    J Phys Chem B; 2005 Sep; 109(37):17574-8. PubMed ID: 16853248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiolysis of N
    Vasconcelos FA; Pilling S; Rocha WRM; Rothard H; Boduch P
    Phys Chem Chem Phys; 2017 Sep; 19(35):24154-24165. PubMed ID: 28837188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the formation of ozone in oxygen-rich solar system ices via ionizing radiation.
    Ennis CP; Bennett CJ; Kaiser RI
    Phys Chem Chem Phys; 2011 May; 13(20):9469-82. PubMed ID: 21483931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reflection absorption infrared spectroscopy and temperature-programmed desorption studies of the adsorption and desorption of amorphous and crystalline water on a graphite surface.
    Bolina AS; Wolff AJ; Brown WA
    J Phys Chem B; 2005 Sep; 109(35):16836-45. PubMed ID: 16853142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.