BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 24671508)

  • 1. The interactome of the atypical phosphatase Rtr1 in Saccharomyces cerevisiae.
    Smith-Kinnaman WR; Berna MJ; Hunter GO; True JD; Hsu P; Cabello GI; Fox MJ; Varani G; Mosley AL
    Mol Biosyst; 2014 Jul; 10(7):1730-41. PubMed ID: 24671508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphatase Rtr1 Regulates Global Levels of Serine 5 RNA Polymerase II C-Terminal Domain Phosphorylation and Cotranscriptional Histone Methylation.
    Hunter GO; Fox MJ; Smith-Kinnaman WR; Gogol M; Fleharty B; Mosley AL
    Mol Cell Biol; 2016 Sep; 36(17):2236-45. PubMed ID: 27247267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rtr1 is a CTD phosphatase that regulates RNA polymerase II during the transition from serine 5 to serine 2 phosphorylation.
    Mosley AL; Pattenden SG; Carey M; Venkatesh S; Gilmore JM; Florens L; Workman JL; Washburn MP
    Mol Cell; 2009 Apr; 34(2):168-78. PubMed ID: 19394294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA Polymerase II CTD phosphatase Rtr1 fine-tunes transcription termination.
    Victorino JF; Fox MJ; Smith-Kinnaman WR; Peck Justice SA; Burriss KH; Boyd AK; Zimmerly MA; Chan RR; Hunter GO; Liu Y; Mosley AL
    PLoS Genet; 2020 Mar; 16(3):e1008317. PubMed ID: 32187185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rtr1 is a dual specificity phosphatase that dephosphorylates Tyr1 and Ser5 on the RNA polymerase II CTD.
    Hsu PL; Yang F; Smith-Kinnaman W; Yang W; Song JE; Mosley AL; Varani G
    J Mol Biol; 2014 Aug; 426(16):2970-81. PubMed ID: 24951832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1.
    Bartkowiak B; Liu P; Phatnani HP; Fuda NJ; Cooper JJ; Price DH; Adelman K; Lis JT; Greenleaf AL
    Genes Dev; 2010 Oct; 24(20):2303-16. PubMed ID: 20952539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Association of Rpb4 with RNA Polymerase II Depends on CTD Ser5P Phosphatase Rtr1 and Influences mRNA Decay in
    Garrido-Godino AI; Cuevas-Bermúdez A; Gutiérrez-Santiago F; Mota-Trujillo MDC; Navarro F
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rtr1 is the Saccharomyces cerevisiae homolog of a novel family of RNA polymerase II-binding proteins.
    Gibney PA; Fries T; Bailer SM; Morano KA
    Eukaryot Cell; 2008 Jun; 7(6):938-48. PubMed ID: 18408053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of Saccharomyces cerevisiae Rtr1 reveals an active site for an atypical phosphatase.
    Irani S; Yogesha SD; Mayfield J; Zhang M; Zhang Y; Matthews WL; Nie G; Prescott NA; Zhang YJ
    Sci Signal; 2016 Mar; 9(417):ra24. PubMed ID: 26933063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rat1p maintains RNA polymerase II CTD phosphorylation balance.
    Jimeno-González S; Schmid M; Malagon F; Haaning LL; Jensen TH
    RNA; 2014 Apr; 20(4):551-8. PubMed ID: 24501251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rtr1 is required for Rpb1-Rpb2 assembly of RNAPII and prevents their cytoplasmic clump formation.
    Ma L; Wang L; Gao M; Zhang X; Zhao X; Xie D; Zhang J; Wang Z; Hou L; Zeng F
    FASEB J; 2022 Nov; 36(11):e22585. PubMed ID: 36190433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorylation of the yeast Rpb1 C-terminal domain at serines 2, 5, and 7.
    Kim M; Suh H; Cho EJ; Buratowski S
    J Biol Chem; 2009 Sep; 284(39):26421-6. PubMed ID: 19679665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Npa3/ScGpn1 carboxy-terminal tail is dispensable for cell viability and RNA polymerase II nuclear targeting but critical for microtubule stability and function.
    Guerrero-Serrano G; Castanedo L; Cristóbal-Mondragón GR; Montalvo-Arredondo J; Riego-Ruíz L; DeLuna A; De Las Peñas A; Castaño I; Calera MR; Sánchez-Olea R
    Biochim Biophys Acta Mol Cell Res; 2017 Mar; 1864(3):451-462. PubMed ID: 27965115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A feed forward circuit comprising Spt6, Ctk1 and PAF regulates Pol II CTD phosphorylation and transcription elongation.
    Dronamraju R; Strahl BD
    Nucleic Acids Res; 2014 Jan; 42(2):870-81. PubMed ID: 24163256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. IMP dehydrogenase is recruited to the transcription complex through serine 2 phosphorylation of RNA polymerase II.
    Park JH; Ahn SH
    Biochem Biophys Res Commun; 2010 Feb; 392(4):588-92. PubMed ID: 20097157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Ssu72 phosphatase mediates the RNA polymerase II initiation-elongation transition.
    Rosado-Lugo JD; Hampsey M
    J Biol Chem; 2014 Dec; 289(49):33916-26. PubMed ID: 25339178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Yeast carboxyl-terminal domain kinase I positively and negatively regulates RNA polymerase II carboxyl-terminal domain phosphorylation.
    Patturajan M; Conrad NK; Bregman DB; Corden JL
    J Biol Chem; 1999 Sep; 274(39):27823-8. PubMed ID: 10488128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hyperphosphorylation of the C-terminal repeat domain of RNA polymerase II facilitates dissociation of its complex with mediator.
    Søgaard TM; Svejstrup JQ
    J Biol Chem; 2007 May; 282(19):14113-20. PubMed ID: 17376774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative proteomics demonstrates that the RNA polymerase II subunits Rpb4 and Rpb7 dissociate during transcriptional elongation.
    Mosley AL; Hunter GO; Sardiu ME; Smolle M; Workman JL; Florens L; Washburn MP
    Mol Cell Proteomics; 2013 Jun; 12(6):1530-8. PubMed ID: 23418395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sub1 globally regulates RNA polymerase II C-terminal domain phosphorylation.
    García A; Rosonina E; Manley JL; Calvo O
    Mol Cell Biol; 2010 Nov; 30(21):5180-93. PubMed ID: 20823273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.