These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 24672427)

  • 41. Missense mutations affecting Ca
    Dal Cortivo G; Marino V; Bonì F; Milani M; Dell'Orco D
    Biochim Biophys Acta Mol Cell Res; 2020 Oct; 1867(10):118794. PubMed ID: 32650103
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structural insights into membrane targeting by the flagellar calcium-binding protein (FCaBP), a myristoylated and palmitoylated calcium sensor in Trypanosoma cruzi.
    Wingard JN; Ladner J; Vanarotti M; Fisher AJ; Robinson H; Buchanan KT; Engman DM; Ames JB
    J Biol Chem; 2008 Aug; 283(34):23388-96. PubMed ID: 18559337
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ca2+-myristoyl switch in the neuronal calcium sensor recoverin requires different functions of Ca2+-binding sites.
    Senin II; Fischer T; Komolov KE; Zinchenko DV; Philippov PP; Koch KW
    J Biol Chem; 2002 Dec; 277(52):50365-72. PubMed ID: 12393897
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A highly conserved cysteine of neuronal calcium-sensing proteins controls cooperative binding of Ca2+ to recoverin.
    Ranaghan MJ; Kumar RP; Chakrabarti KS; Buosi V; Kern D; Oprian DD
    J Biol Chem; 2013 Dec; 288(50):36160-7. PubMed ID: 24189072
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Guanylyl cyclase activating protein. A calcium-sensitive regulator of phototransduction.
    Gorczyca WA; Polans AS; Surgucheva IG; Subbaraya I; Baehr W; Palczewski K
    J Biol Chem; 1995 Sep; 270(37):22029-36. PubMed ID: 7665624
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structure, topology, and dynamics of myristoylated recoverin bound to phospholipid bilayers.
    Valentine KG; Mesleh MF; Opella SJ; Ikura M; Ames JB
    Biochemistry; 2003 Jun; 42(21):6333-40. PubMed ID: 12767213
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structural basis for calcium-induced inhibition of rhodopsin kinase by recoverin.
    Ames JB; Levay K; Wingard JN; Lusin JD; Slepak VZ
    J Biol Chem; 2006 Dec; 281(48):37237-45. PubMed ID: 17020884
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ca2+-dependent conformational changes in the neuronal Ca2+-sensor recoverin probed by the fluorescent dye Alexa647.
    Gensch T; Komolov KE; Senin II; Philippov PP; Koch KW
    Proteins; 2007 Feb; 66(2):492-9. PubMed ID: 17078090
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sequestration of the membrane-targeting myristoyl group of recoverin in the calcium-free state.
    Tanaka T; Ames JB; Harvey TS; Stryer L; Ikura M
    Nature; 1995 Aug; 376(6539):444-7. PubMed ID: 7630423
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Calcium-myristoyl protein switch.
    Zozulya S; Stryer L
    Proc Natl Acad Sci U S A; 1992 Dec; 89(23):11569-73. PubMed ID: 1454850
    [TBL] [Abstract][Full Text] [Related]  

  • 51. GUCY2D Cone-Rod Dystrophy-6 Is a "Phototransduction Disease" Triggered by Abnormal Calcium Feedback on Retinal Membrane Guanylyl Cyclase 1.
    Sato S; Peshenko IV; Olshevskaya EV; Kefalov VJ; Dizhoor AM
    J Neurosci; 2018 Mar; 38(12):2990-3000. PubMed ID: 29440533
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Calcium- and myristoyl-dependent properties of guanylate cyclase-activating protein-1 and protein-2.
    Hwang JY; Koch KW
    Biochemistry; 2002 Oct; 41(43):13021-8. PubMed ID: 12390029
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ca2+-dependent conformational changes in bovine GCAP-2.
    Hughes RE; Brzovic PS; Dizhoor AM; Klevit RE; Hurley JB
    Protein Sci; 1998 Dec; 7(12):2675-80. PubMed ID: 9865963
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Calcium-dependent solvation of the myristoyl group of recoverin.
    Hughes RE; Brzovic PS; Klevit RE; Hurley JB
    Biochemistry; 1995 Sep; 34(36):11410-6. PubMed ID: 7547868
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular tuning of calcium dependent processes by neuronal calcium sensor proteins in the retina.
    Koch KW
    Biochim Biophys Acta Mol Cell Res; 2023 Aug; 1870(6):119491. PubMed ID: 37230154
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ca2+ differently affects hydrophobic properties of guanylyl cyclase-activating proteins (GCAPs) and recoverin.
    Gorczyca WA; Kobiałka M; Kuropatwa M; Kurowska E
    Acta Biochim Pol; 2003; 50(2):367-76. PubMed ID: 12833163
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identification of residues that determine the absence of a Ca(2+)/myristoyl switch in neuronal calcium sensor-1.
    O'Callaghan DW; Burgoyne RD
    J Biol Chem; 2004 Apr; 279(14):14347-54. PubMed ID: 14726528
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The neuronal calcium sensor family of Ca2+-binding proteins.
    Burgoyne RD; Weiss JL
    Biochem J; 2001 Jan; 353(Pt 1):1-12. PubMed ID: 11115393
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Conformational changes in guanylyl cyclase-activating protein 1 (GCAP1) and its tryptophan mutants as a function of calcium concentration.
    Sokal I; Otto-Bruc AE; Surgucheva I; Verlinde CL; Wang CK; Baehr W; Palczewski K
    J Biol Chem; 1999 Jul; 274(28):19829-37. PubMed ID: 10391927
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Retinal guanylyl cyclase isozyme 1 is the preferential in vivo target for constitutively active GCAP1 mutants causing congenital degeneration of photoreceptors.
    Olshevskaya EV; Peshenko IV; Savchenko AB; Dizhoor AM
    J Neurosci; 2012 May; 32(21):7208-17. PubMed ID: 22623665
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.