BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 24672553)

  • 1. Contralateral ear occlusion for improving the reliability of otoacoustic emission screening tests.
    Papsin E; Harrison AL; Carraro M; Harrison RV
    Int J Otolaryngol; 2014; 2014():248187. PubMed ID: 24672553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Standardization of the TEOAE Contralateral Suppression Test in Terms of Stimulus Intensity and Contralateral Noise Duration in Individuals with Normal Hearing.
    Celikgun B; Derinsu U
    J Am Acad Audiol; 2022 Jan; 33(1):29-35. PubMed ID: 35512841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of neonatal hearing impairment: evaluation of transient evoked otoacoustic emission, distortion product otoacoustic emission, and auditory brain stem response test performance.
    Norton SJ; Gorga MP; Widen JE; Folsom RC; Sininger Y; Cone-Wesson B; Vohr BR; Mascher K; Fletcher K
    Ear Hear; 2000 Oct; 21(5):508-28. PubMed ID: 11059707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Forward- and Emitted-Pressure Calibrations on the Variability of Otoacoustic Emission Measurements Across Repeated Probe Fits.
    Maxim T; Shera CA; Charaziak KK; Abdala C
    Ear Hear; 2019; 40(6):1345-1358. PubMed ID: 30882535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Contralateral modification of transitory evoked otoacoustic emissions].
    Ganz M; von Specht H; Kevanishvili Z
    Laryngorhinootologie; 1997 May; 76(5):278-83. PubMed ID: 9280414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cochlear Nerve Aplasia with Detectable Olivocochlear Efferent Function: A Distinct Presentation of Auditory Neuropathy Spectrum Disorder.
    James AL; Dixon PR; Harrison RV
    Audiol Neurootol; 2018; 23(1):39-47. PubMed ID: 29936500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Clinical Study of Effect of Hyperpyrexia on Otoacoustic Emissions in Children.
    Murthy VA; Spandana K
    Indian J Otolaryngol Head Neck Surg; 2018 Sep; 70(3):438-449. PubMed ID: 30211105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative assessment of methods for the detection of otoacoustic emissions.
    Brass D; Kemp DT
    Ear Hear; 1994 Oct; 15(5):378-89. PubMed ID: 7813824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of spontaneous otoacoustic emissions (SOAE) on acoustic distortion product input/output functions: does the medial efferent system act differently in the vicinity of an SOAE?
    Moulin A; Collet L; Morgon A
    Acta Otolaryngol; 1992; 112(2):210-4. PubMed ID: 1604981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of transient-evoked otoacoustic emissions (TEOES) in neonates.
    Aidan D; Lestang P; Avan P; Bonfils P
    Acta Otolaryngol; 1997 Jan; 117(1):25-30. PubMed ID: 9039476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Occupational exposure to noise decreases otoacoustic emission efferent suppression.
    Sliwinska-Kowalska M; Kotylo P
    Int J Audiol; 2002 Mar; 41(2):113-9. PubMed ID: 12212856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [A survey of the otoacoustic emissions (OAEs) of workers exposed to noise in manufacturing factories].
    Kabe I; Koga Y; Kochi T; Miyauchi H; Minozoe A; Kuwata D; Tsustumi I; Nakagawa M; Tanaka S
    Sangyo Eiseigaku Zasshi; 2015; 57(6):306-13. PubMed ID: 26346131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contralateral suppression of transient-evoked otoacoustic emissions in children with sickle cell disease.
    Stuart A; Preast JL
    Ear Hear; 2012; 33(3):421-9. PubMed ID: 22246207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of High Sound Exposure During Air-Conducted Vestibular Evoked Myogenic Potential Testing in Children and Young Adults.
    Rodriguez AI; Thomas MLA; Fitzpatrick D; Janky KL
    Ear Hear; 2018; 39(2):269-277. PubMed ID: 29466264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Air-Conducted Vestibular Evoked Myogenic Potential Testing in Children, Adolescents, and Young Adults: Thresholds, Frequency Tuning, and Effects of Sound Exposure.
    Rodriguez AI; Thomas MLA; Janky KL
    Ear Hear; 2019; 40(1):192-203. PubMed ID: 29870520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Relationship between Contralateral Suppression of Transient Evoked Otoacoustic Emission and Unmasking of Speech Evoked Auditory Brainstem Response.
    Kalaiah MK; Mishra K; Shastri U
    Int Arch Otorhinolaryngol; 2022 Oct; 26(4):e676-e682. PubMed ID: 36405487
    [No Abstract]   [Full Text] [Related]  

  • 17. Outer ear canal sound pressure and bone vibration measurement in SSD and CHL patients using a transcutaneous bone conduction instrument.
    Ghoncheh M; Lilli G; Lenarz T; Maier H
    Hear Res; 2016 Oct; 340():161-168. PubMed ID: 26723102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient evoked otoacoustic emissions (TEOAEs) in new-borns: normative data.
    Paludetti G; Ottaviani F; Fetoni AR; Zuppa AA; Tortorolo G
    Int J Pediatr Otorhinolaryngol; 1999 Mar; 47(3):235-41. PubMed ID: 10321778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contralateral auditory stimulation alters acoustic distortion products in humans.
    Moulin A; Collet L; Duclaux R
    Hear Res; 1993 Feb; 65(1-2):193-210. PubMed ID: 8458751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Medial olivocochlear efferent reflex in humans: otoacoustic emission (OAE) measurement issues and the advantages of stimulus frequency OAEs.
    Guinan JJ; Backus BC; Lilaonitkul W; Aharonson V
    J Assoc Res Otolaryngol; 2003 Dec; 4(4):521-40. PubMed ID: 12799992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.