These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
471 related articles for article (PubMed ID: 24672754)
1. Lgr5-positive supporting cells generate new hair cells in the postnatal cochlea. Bramhall NF; Shi F; Arnold K; Hochedlinger K; Edge AS Stem Cell Reports; 2014 Mar; 2(3):311-22. PubMed ID: 24672754 [TBL] [Abstract][Full Text] [Related]
2. Wnt activation followed by Notch inhibition promotes mitotic hair cell regeneration in the postnatal mouse cochlea. Ni W; Zeng S; Li W; Chen Y; Zhang S; Tang M; Sun S; Chai R; Li H Oncotarget; 2016 Oct; 7(41):66754-66768. PubMed ID: 27564256 [TBL] [Abstract][Full Text] [Related]
3. Notch inhibition induces mitotically generated hair cells in mammalian cochleae via activating the Wnt pathway. Li W; Wu J; Yang J; Sun S; Chai R; Chen ZY; Li H Proc Natl Acad Sci U S A; 2015 Jan; 112(1):166-71. PubMed ID: 25535395 [TBL] [Abstract][Full Text] [Related]
4. Notch inhibition induces cochlear hair cell regeneration and recovery of hearing after acoustic trauma. Mizutari K; Fujioka M; Hosoya M; Bramhall N; Okano HJ; Okano H; Edge AS Neuron; 2013 Jan; 77(1):58-69. PubMed ID: 23312516 [TBL] [Abstract][Full Text] [Related]
5. Knockdown of Foxg1 in supporting cells increases the trans-differentiation of supporting cells into hair cells in the neonatal mouse cochlea. Zhang S; Zhang Y; Dong Y; Guo L; Zhang Z; Shao B; Qi J; Zhou H; Zhu W; Yan X; Hong G; Zhang L; Zhang X; Tang M; Zhao C; Gao X; Chai R Cell Mol Life Sci; 2020 Apr; 77(7):1401-1419. PubMed ID: 31485717 [TBL] [Abstract][Full Text] [Related]
6. Wnt signaling induces proliferation of sensory precursors in the postnatal mouse cochlea. Chai R; Kuo B; Wang T; Liaw EJ; Xia A; Jan TA; Liu Z; Taketo MM; Oghalai JS; Nusse R; Zuo J; Cheng AG Proc Natl Acad Sci U S A; 2012 May; 109(21):8167-72. PubMed ID: 22562792 [TBL] [Abstract][Full Text] [Related]
7. Generation of hair cells in neonatal mice by β-catenin overexpression in Lgr5-positive cochlear progenitors. Shi F; Hu L; Edge AS Proc Natl Acad Sci U S A; 2013 Aug; 110(34):13851-6. PubMed ID: 23918377 [TBL] [Abstract][Full Text] [Related]
8. COUP-TFI controls Notch regulation of hair cell and support cell differentiation. Tang LS; Alger HM; Pereira FA Development; 2006 Sep; 133(18):3683-93. PubMed ID: 16914494 [TBL] [Abstract][Full Text] [Related]
9. Nestin-expressing cells in the developing, mature and noise-exposed cochlear epithelium. Watanabe R; Morell MH; Miller JM; Kanicki AC; O'Shea KS; Altschuler RA; Raphael Y Mol Cell Neurosci; 2012 Feb; 49(2):104-9. PubMed ID: 22122823 [TBL] [Abstract][Full Text] [Related]
10. A dual function for canonical Wnt/β-catenin signaling in the developing mammalian cochlea. Jacques BE; Puligilla C; Weichert RM; Ferrer-Vaquer A; Hadjantonakis AK; Kelley MW; Dabdoub A Development; 2012 Dec; 139(23):4395-404. PubMed ID: 23132246 [TBL] [Abstract][Full Text] [Related]
11. Wnt-responsive Lgr5-expressing stem cells are hair cell progenitors in the cochlea. Shi F; Kempfle JS; Edge AS J Neurosci; 2012 Jul; 32(28):9639-48. PubMed ID: 22787049 [TBL] [Abstract][Full Text] [Related]
12. Clonal Expansion of Lgr5-Positive Cells from Mammalian Cochlea and High-Purity Generation of Sensory Hair Cells. McLean WJ; Yin X; Lu L; Lenz DR; McLean D; Langer R; Karp JM; Edge ASB Cell Rep; 2017 Feb; 18(8):1917-1929. PubMed ID: 28228258 [TBL] [Abstract][Full Text] [Related]
13. Multiple supporting cell subtypes are capable of spontaneous hair cell regeneration in the neonatal mouse cochlea. McGovern MM; Randle MR; Cuppini CL; Graves KA; Cox BC Development; 2019 Feb; 146(4):. PubMed ID: 30770379 [TBL] [Abstract][Full Text] [Related]
14. Unidirectional and stage-dependent roles of Notch1 in Wnt-responsive Lgr5 Jiang H; Zeng S; Ni W; Chen Y; Li W Front Med; 2019 Dec; 13(6):705-712. PubMed ID: 31598881 [TBL] [Abstract][Full Text] [Related]
15. Dynamic expression of Lgr5, a Wnt target gene, in the developing and mature mouse cochlea. Chai R; Xia A; Wang T; Jan TA; Hayashi T; Bermingham-McDonogh O; Cheng AG J Assoc Res Otolaryngol; 2011 Aug; 12(4):455-69. PubMed ID: 21472479 [TBL] [Abstract][Full Text] [Related]
16. Extensive Supporting Cell Proliferation and Mitotic Hair Cell Generation by In Vivo Genetic Reprogramming in the Neonatal Mouse Cochlea. Ni W; Lin C; Guo L; Wu J; Chen Y; Chai R; Li W; Li H J Neurosci; 2016 Aug; 36(33):8734-45. PubMed ID: 27535918 [TBL] [Abstract][Full Text] [Related]
17. Transcriptional response to Wnt activation regulates the regenerative capacity of the mammalian cochlea. Samarajeewa A; Lenz DR; Xie L; Chiang H; Kirchner R; Mulvaney JF; Edge ASB; Dabdoub A Development; 2018 Nov; 145(23):. PubMed ID: 30389848 [TBL] [Abstract][Full Text] [Related]
18. Notch signaling and Hes labeling in the normal and drug-damaged organ of Corti. Batts SA; Shoemaker CR; Raphael Y Hear Res; 2009 Mar; 249(1-2):15-22. PubMed ID: 19185606 [TBL] [Abstract][Full Text] [Related]
19. Characterization of Lgr5+ progenitor cell transcriptomes in the apical and basal turns of the mouse cochlea. Waqas M; Guo L; Zhang S; Chen Y; Zhang X; Wang L; Tang M; Shi H; Bird PI; Li H; Chai R Oncotarget; 2016 Jul; 7(27):41123-41141. PubMed ID: 27070092 [TBL] [Abstract][Full Text] [Related]
20. Tympanic border cells are Wnt-responsive and can act as progenitors for postnatal mouse cochlear cells. Jan TA; Chai R; Sayyid ZN; van Amerongen R; Xia A; Wang T; Sinkkonen ST; Zeng YA; Levin JR; Heller S; Nusse R; Cheng AG Development; 2013 Mar; 140(6):1196-206. PubMed ID: 23444352 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]