These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
471 related articles for article (PubMed ID: 24672754)
21. Differentiation of the lateral compartment of the cochlea requires a temporally restricted FGF20 signal. Huh SH; Jones J; Warchol ME; Ornitz DM PLoS Biol; 2012 Jan; 10(1):e1001231. PubMed ID: 22235191 [TBL] [Abstract][Full Text] [Related]
22. Sox2-CreER mice are useful for fate mapping of mature, but not neonatal, cochlear supporting cells in hair cell regeneration studies. Walters BJ; Yamashita T; Zuo J Sci Rep; 2015 Jun; 5():11621. PubMed ID: 26108463 [TBL] [Abstract][Full Text] [Related]
23. AAV-Net1 facilitates the trans-differentiation of supporting cells into hair cells in the murine cochlea. Zhang L; Fang Y; Tan F; Guo F; Zhang Z; Li N; Sun Q; Qi J; Chai R Cell Mol Life Sci; 2023 Mar; 80(4):86. PubMed ID: 36917323 [TBL] [Abstract][Full Text] [Related]
24. TAK1 expression in the cochlea: a specific marker for adult supporting cells. Parker MA; Jiang K; Kempfle JS; Mizutari K; Simmons CL; Bieber R; Adams J; Edge AS J Assoc Res Otolaryngol; 2011 Aug; 12(4):471-83. PubMed ID: 21472480 [TBL] [Abstract][Full Text] [Related]
25. HMGA2, the architectural transcription factor high mobility group, is expressed in the developing and mature mouse cochlea. Smeti I; Watabe I; Savary E; Fontbonne A; Zine A PLoS One; 2014; 9(2):e88757. PubMed ID: 24551154 [TBL] [Abstract][Full Text] [Related]
26. Pharmacological inhibition of Notch signaling in the mature guinea pig cochlea. Hori R; Nakagawa T; Sakamoto T; Matsuoka Y; Takebayashi S; Ito J Neuroreport; 2007 Dec; 18(18):1911-4. PubMed ID: 18007185 [TBL] [Abstract][Full Text] [Related]
27. Rps14 upregulation promotes inner ear progenitor proliferation and hair cell regeneration in the neonatal mouse cochlea. Xu C; Qi J; Hu X; Zhang L; Sun Q; Li N; Chen X; Guo F; Wu P; Shi Y; Chai R Cell Prolif; 2023 May; 56(5):e13458. PubMed ID: 36977657 [TBL] [Abstract][Full Text] [Related]
28. Cell cycle reactivation of cochlear progenitor cells in neonatal FUCCI mice by a GSK3 small molecule inhibitor. Roccio M; Hahnewald S; Perny M; Senn P Sci Rep; 2015 Dec; 5():17886. PubMed ID: 26643939 [TBL] [Abstract][Full Text] [Related]
29. Notch signaling limits supporting cell plasticity in the hair cell-damaged early postnatal murine cochlea. Korrapati S; Roux I; Glowatzki E; Doetzlhofer A PLoS One; 2013; 8(8):e73276. PubMed ID: 24023676 [TBL] [Abstract][Full Text] [Related]
30. Sox2 in the differentiation of cochlear progenitor cells. Kempfle JS; Turban JL; Edge AS Sci Rep; 2016 Mar; 6():23293. PubMed ID: 26988140 [TBL] [Abstract][Full Text] [Related]
31. The early postnatal development of F-actin patterns in the organ of Corti of the gerbil (Meriones unguiculatus) and the horseshoe bat (Rhinolophus rouxi). Kuhn B; Vater M Hear Res; 1996 Sep; 99(1-2):47-70. PubMed ID: 8970813 [TBL] [Abstract][Full Text] [Related]
32. Long-term survival of LGR5 expressing supporting cells after severe ototoxic trauma in the adult mouse cochlea. Smith-Cortinez N; Hendriksen FGJ; Ramekers D; Stokroos RJ; Versnel H; Straatman LV Front Cell Neurosci; 2023; 17():1236894. PubMed ID: 37692553 [TBL] [Abstract][Full Text] [Related]
33. AAV-mediated Gpm6b expression supports hair cell reprogramming. Sun Q; Zhang L; Chen T; Li N; Tan F; Gu X; Zhou Y; Zhang Z; Lu Y; Lu J; Qian X; Guan B; Qi J; Ye F; Chai R Cell Prolif; 2024 Jul; 57(7):e13620. PubMed ID: 38400824 [TBL] [Abstract][Full Text] [Related]
34. Localization of cadherins in the postnatal cochlear epithelium and their relation to space formation. Beaulac HJ; Munnamalai V Dev Dyn; 2024 Aug; 253(8):771-780. PubMed ID: 38264972 [TBL] [Abstract][Full Text] [Related]
35. In Vivo Cochlear Hair Cell Generation and Survival by Coactivation of β-Catenin and Atoh1. Kuo BR; Baldwin EM; Layman WS; Taketo MM; Zuo J J Neurosci; 2015 Jul; 35(30):10786-98. PubMed ID: 26224861 [TBL] [Abstract][Full Text] [Related]
36. Defining the cellular environment in the organ of Corti following extensive hair cell loss: a basis for future sensory cell replacement in the Cochlea. Taylor RR; Jagger DJ; Forge A PLoS One; 2012; 7(1):e30577. PubMed ID: 22299045 [TBL] [Abstract][Full Text] [Related]
37. Fgf signaling regulates development and transdifferentiation of hair cells and supporting cells in the basilar papilla. Jacques BE; Dabdoub A; Kelley MW Hear Res; 2012 Jul; 289(1-2):27-39. PubMed ID: 22575790 [TBL] [Abstract][Full Text] [Related]
38. Green Tea Polyphenols Protects Cochlear Hair Cells from Ototoxicity by Inhibiting Notch Signalling. Gu LT; Yang J; Su SZ; Liu WW; Shi ZG; Wang QR Neurochem Res; 2015 Jun; 40(6):1211-9. PubMed ID: 25896296 [TBL] [Abstract][Full Text] [Related]
39. EGFR signaling is required for regenerative proliferation in the cochlea: conservation in birds and mammals. White PM; Stone JS; Groves AK; Segil N Dev Biol; 2012 Mar; 363(1):191-200. PubMed ID: 22230616 [TBL] [Abstract][Full Text] [Related]
40. The crosstalk between the Notch, Wnt, and SHH signaling pathways in regulating the proliferation and regeneration of sensory progenitor cells in the mouse cochlea. Wu J; Li W; Guo L; Zhao L; Sun S; Li H Cell Tissue Res; 2021 Nov; 386(2):281-296. PubMed ID: 34223978 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]