These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 24673586)

  • 1. EEG delta oscillations index inhibitory control of contextual novelty to both irrelevant distracters and relevant task-switch cues.
    Prada L; Barceló F; Herrmann CS; Escera C
    Psychophysiology; 2014 Jul; 51(7):658-72. PubMed ID: 24673586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Task switching and novelty processing activate a common neural network for cognitive control.
    Barcelo F; Escera C; Corral MJ; Periáñez JA
    J Cogn Neurosci; 2006 Oct; 18(10):1734-48. PubMed ID: 17014377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Independent contributions of theta and delta time-frequency activity to the visual oddball P3b.
    Bachman MD; Bernat EM
    Int J Psychophysiol; 2018 Jun; 128():70-80. PubMed ID: 29574233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. What is novel in the novelty oddball paradigm? Functional significance of the novelty P3 event-related potential as revealed by independent component analysis.
    Debener S; Makeig S; Delorme A; Engel AK
    Brain Res Cogn Brain Res; 2005 Mar; 22(3):309-21. PubMed ID: 15722203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diversity of the P3 in the task-switching paradigm.
    Gajewski PD; Falkenstein M
    Brain Res; 2011 Sep; 1411():87-97. PubMed ID: 21803343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multisubject Decomposition of Event-related Positivities in Cognitive Control: Tackling Age-related Changes in Reactive Control.
    Enriquez-Geppert S; Barceló F
    Brain Topogr; 2018 Jan; 31(1):17-34. PubMed ID: 27522402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Individual differences in aging and cognitive control modulate the neural indexes of context updating and maintenance during task switching.
    Adrover-Roig D; Barceló F
    Cortex; 2010 Apr; 46(4):434-50. PubMed ID: 19889406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic low frequency EEG phase synchronization patterns during proactive control of task switching.
    López ME; Pusil S; Pereda E; Maestú F; Barceló F
    Neuroimage; 2019 Feb; 186():70-82. PubMed ID: 30394328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Event-related potential correlates of task switching and switch costs.
    Kieffaber PD; Hetrick WP
    Psychophysiology; 2005 Jan; 42(1):56-71. PubMed ID: 15720581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. P3 and delta band responses in visual oddball paradigm in schizophrenia.
    Ergen M; Marbach S; Brand A; Başar-Eroğlu C; Demiralp T
    Neurosci Lett; 2008 Aug; 440(3):304-8. PubMed ID: 18571323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Think differently: a brain orienting response to task novelty.
    Barceló F; Periáñez JA; Knight RT
    Neuroreport; 2002 Oct; 13(15):1887-92. PubMed ID: 12395085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Updating sensory versus task representations during task-switching: insights from cognitive brain potentials in humans.
    Periáñez JA; Barceló F
    Neuropsychologia; 2009 Mar; 47(4):1160-72. PubMed ID: 19350711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling of infraslow fluctuations in autonomic and central vigilance markers: skin temperature, EEG β power and ERP P300 latency.
    Ramautar JR; Romeijn N; Gómez-Herrero G; Piantoni G; Van Someren EJ
    Int J Psychophysiol; 2013 Aug; 89(2):158-64. PubMed ID: 23313606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theta- and delta-band EEG network dynamics during a novelty oddball task.
    Harper J; Malone SM; Iacono WG
    Psychophysiology; 2017 Nov; 54(11):1590-1605. PubMed ID: 28580687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regional and inter-regional theta oscillation during episodic novelty processing.
    Lee GT; Lee C; Kim KH; Jung KY
    Brain Cogn; 2014 Oct; 90():70-5. PubMed ID: 25014407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behavioural and electrophysiological measures of task switching during single and mixed-task conditions.
    Goffaux P; Phillips NA; Sinai M; Pushkar D
    Biol Psychol; 2006 Jun; 72(3):278-90. PubMed ID: 16413655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of task sets: evidence from dense-array event-related potentials.
    Poulsen C; Luu P; Davey C; Tucker DM
    Brain Res Cogn Brain Res; 2005 Jun; 24(1):133-54. PubMed ID: 15922166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The nature of switch cost: task set configuration or carry-over effect?
    Hsieh S; Liu LC
    Brain Res Cogn Brain Res; 2005 Feb; 22(2):165-75. PubMed ID: 15653291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The dissociation between the P3a event-related potential and behavioral distraction.
    Wetzel N; Schröger E; Widmann A
    Psychophysiology; 2013 Sep; 50(9):920-30. PubMed ID: 23763292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing P300 modulations: target-to-target interval versus infrequent nontarget-to-nontarget interval in a three-stimulus task.
    Steiner GZ; Brennan ML; Gonsalvez CJ; Barry RJ
    Psychophysiology; 2013 Feb; 50(2):187-94. PubMed ID: 23153378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.