BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 24674103)

  • 1. Involvement of the Acr3 and DctA anti-porters in arsenite oxidation in Agrobacterium tumefaciens 5A.
    Kang YS; Shi Z; Bothner B; Wang G; McDermott TR
    Environ Microbiol; 2015 Jun; 17(6):1950-62. PubMed ID: 24674103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomics and genetic analyses reveal the effects of arsenite oxidation on metabolic pathways and the roles of AioR in Agrobacterium tumefaciens GW4.
    Shi K; Wang Q; Fan X; Wang G
    Environ Pollut; 2018 Apr; 235():700-709. PubMed ID: 29339339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A periplasmic arsenite-binding protein involved in regulating arsenite oxidation.
    Liu G; Liu M; Kim EH; Maaty WS; Bothner B; Lei B; Rensing C; Wang G; McDermott TR
    Environ Microbiol; 2012 Jul; 14(7):1624-34. PubMed ID: 22176720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenite oxidase also functions as an antimonite oxidase.
    Wang Q; Warelow TP; Kang YS; Romano C; Osborne TH; Lehr CR; Bothner B; McDermott TR; Santini JM; Wang G
    Appl Environ Microbiol; 2015 Mar; 81(6):1959-65. PubMed ID: 25576601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequencing and expression of two arsenic resistance operons with different functions in the highly arsenic-resistant strain Ochrobactrum tritici SCII24T.
    Branco R; Chung AP; Morais PV
    BMC Microbiol; 2008 Jun; 8():95. PubMed ID: 18554386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efflux Transporter ArsK Is Responsible for Bacterial Resistance to Arsenite, Antimonite, Trivalent Roxarsone, and Methylarsenite.
    Shi K; Li C; Rensing C; Dai X; Fan X; Wang G
    Appl Environ Microbiol; 2018 Dec; 84(24):. PubMed ID: 30315082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Oxidoreductase AioE is Responsible for Bacterial Arsenite Oxidation and Resistance.
    Wang Q; Han Y; Shi K; Fan X; Wang L; Li M; Wang G
    Sci Rep; 2017 Jan; 7():41536. PubMed ID: 28128323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of antimonite oxidation and resistance by the phosphate regulator PhoB in Agrobacterium tumefaciens GW4.
    Li J; Qiao Z; Shi M; Zhang Y; Wang G
    Microbiol Res; 2019 Sep; 226():10-18. PubMed ID: 31284939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Na+:H+ antiporter and a molybdate transporter are essential for arsenite oxidation in Agrobacterium tumefaciens.
    Kashyap DR; Botero LM; Lehr C; Hassett DJ; McDermott TR
    J Bacteriol; 2006 Feb; 188(4):1577-84. PubMed ID: 16452441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of genes involved in arsenic resistance in Corynebacterium glutamicum ATCC 13032.
    Ordóñez E; Letek M; Valbuena N; Gil JA; Mateos LM
    Appl Environ Microbiol; 2005 Oct; 71(10):6206-15. PubMed ID: 16204540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of RpoN in regulating bacterial arsenite oxidation.
    Kang YS; Bothner B; Rensing C; McDermott TR
    Appl Environ Microbiol; 2012 Aug; 78(16):5638-45. PubMed ID: 22660703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of C(4)-dicarboxylate transport systems in Pseudomonas aeruginosa PAO1.
    Valentini M; Storelli N; Lapouge K
    J Bacteriol; 2011 Sep; 193(17):4307-16. PubMed ID: 21725012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated co-regulation of bacterial arsenic and phosphorus metabolisms.
    Kang YS; Heinemann J; Bothner B; Rensing C; McDermott TR
    Environ Microbiol; 2012 Dec; 14(12):3097-109. PubMed ID: 23057575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uptake and translocation of arsenite by Pteris vittata L.: effects of glycerol, antimonite and silver.
    Mathews S; Rathinasabapathi B; Ma LQ
    Environ Pollut; 2011 Dec; 159(12):3490-5. PubMed ID: 21893373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The yeast permease Acr3p is a dual arsenite and antimonite plasma membrane transporter.
    Maciaszczyk-Dziubinska E; Wawrzycka D; Sloma E; Migocka M; Wysocki R
    Biochim Biophys Acta; 2010 Nov; 1798(11):2170-5. PubMed ID: 20655873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of amino acid substitutions that toggle substrate selectivity of the yeast arsenite transporter Acr3.
    Mizio K; Wawrzycka D; Staszewski J; Wysocki R; Maciaszczyk-Dziubinska E
    J Hazard Mater; 2023 Aug; 456():131653. PubMed ID: 37224717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome sequence of the arsenite-oxidizing strain Agrobacterium tumefaciens 5A.
    Hao X; Lin Y; Johnstone L; Liu G; Wang G; Wei G; McDermott T; Rensing C
    J Bacteriol; 2012 Feb; 194(4):903. PubMed ID: 22275101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex regulation of arsenite oxidation in Agrobacterium tumefaciens.
    Kashyap DR; Botero LM; Franck WL; Hassett DJ; McDermott TR
    J Bacteriol; 2006 Feb; 188(3):1081-8. PubMed ID: 16428412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simple or complex organic substrates inhibit arsenite oxidation and aioA gene expression in two β-Proteobacteria strains.
    Lescure T; Joulian C; Charles C; Ben Ali Saanda T; Charron M; Breeze D; Bauda P; Battaglia-Brunet F
    Res Microbiol; 2020; 171(1):13-20. PubMed ID: 31562920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptomics analysis defines global cellular response of Agrobacterium tumefaciens 5A to arsenite exposure regulated through the histidine kinases PhoR and AioS.
    Rawle RA; Kang YS; Bothner B; Wang G; McDermott TR
    Environ Microbiol; 2019 Aug; 21(8):2659-2676. PubMed ID: 30815967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.