BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 24674363)

  • 1. Prospective assessment of an atlas-based intervention combined with real-time software feedback in contouring lymph node levels and organs-at-risk in the head and neck: Quantitative assessment of conformance to expert delineation.
    Awan M; Kalpathy-Cramer J; Gunn GB; Beadle BM; Garden AS; Phan J; Holliday E; Jones WE; Maani E; Patel A; Choi J; Clyburn V; Tantiwongkosi B; Rosenthal DI; Fuller CD
    Pract Radiat Oncol; 2013; 3(3):186-193. PubMed ID: 24674363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. vOARiability: Interobserver and intermodality variability analysis in OAR contouring from head and neck CT and MR images.
    Podobnik G; Ibragimov B; Peterlin P; Strojan P; Vrtovec T
    Med Phys; 2024 Mar; 51(3):2175-2186. PubMed ID: 38230752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving automatic delineation for head and neck organs at risk by Deep Learning Contouring.
    van Dijk LV; Van den Bosch L; Aljabar P; Peressutti D; Both S; J H M Steenbakkers R; Langendijk JA; Gooding MJ; Brouwer CL
    Radiother Oncol; 2020 Jan; 142():115-123. PubMed ID: 31653573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contouring of emerging organs-at-risk (OARS) of the female pelvis and interobserver variability: A study by the Italian association of radiotherapy and clinical oncology (AIRO).
    Augurio A; Macchia G; Caravatta L; Lucarelli M; Di Gugliemo F; Vinciguerra A; Seccia B; De Sanctis V; Autorino R; Delle Curti C; Meregalli S; Perrucci E; Raspanti D; Cerrotta A
    Clin Transl Radiat Oncol; 2023 Nov; 43():100688. PubMed ID: 37854671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic resonance imaging organ at risk delineation for nasopharyngeal radiotherapy: Measuring the effectiveness of an educational intervention.
    Ryan O; Dundas K; Surjan Y; Elwadia D; Nguyen K; Cardoso M; Kumar S
    J Med Radiat Sci; 2023 Apr; 70 Suppl 2(Suppl 2):59-69. PubMed ID: 36751021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical validation of atlas-based auto-segmentation of multiple target volumes and normal tissue (swallowing/mastication) structures in the head and neck.
    Teguh DN; Levendag PC; Voet PW; Al-Mamgani A; Han X; Wolf TK; Hibbard LS; Nowak P; Akhiat H; Dirkx ML; Heijmen BJ; Hoogeman MS
    Int J Radiat Oncol Biol Phys; 2011 Nov; 81(4):950-7. PubMed ID: 20932664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prospective International Pilot Study Evaluating the Efficacy of a Self-Guided Contouring Teaching Module With Integrated Feedback for Transitioning From 2D to 3D Treatment Planning.
    Abugideiri M; Schreibmann E; Switchenko J; McDonald MW; Beitler JJ; Curran WJ; Bruner D; Patel P; Tigeneh W; Mijena M; Tian S; Dhabaan A; Esiashvili N; Liu T; Ali AN
    J Glob Oncol; 2019 May; 5():1-16. PubMed ID: 31082303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Initial Evaluation of a Novel Cone-Beam CT-Based Semi-Automated Online Adaptive Radiotherapy System for Head and Neck Cancer Treatment - A Timing and Automation Quality Study.
    Yoon SW; Lin H; Alonso-Basanta M; Anderson N; Apinorasethkul O; Cooper K; Dong L; Kempsey B; Marcel J; Metz J; Scheuermann R; Li T
    Cureus; 2020 Aug; 12(8):e9660. PubMed ID: 32923257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of a software for automatic delineation of the mammary gland and organs at risk in patients treated for breast cancer in lateral position.
    Msika R; Tkatchenko N; Robilliard M; Fourquet A; Kirova Y
    Cancer Radiother; 2020 Dec; 24(8):799-804. PubMed ID: 33046361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is accurate contouring of salivary and swallowing structures necessary to spare them in head and neck VMAT plans?
    Delaney AR; Dahele M; Slotman BJ; Verbakel WFAR
    Radiother Oncol; 2018 May; 127(2):190-196. PubMed ID: 29605479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MRI-Based Upper Abdominal Organs-at-Risk Atlas for Radiation Oncology.
    Lukovic J; Henke L; Gani C; Kim TK; Stanescu T; Hosni A; Lindsay P; Erickson B; Khor R; Eccles C; Boon C; Donker M; Jagavkar R; Nowee ME; Hall WA; Parikh P; Dawson LA
    Int J Radiat Oncol Biol Phys; 2020 Mar; 106(4):743-753. PubMed ID: 31953061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer.
    Lustberg T; van Soest J; Gooding M; Peressutti D; Aljabar P; van der Stoep J; van Elmpt W; Dekker A
    Radiother Oncol; 2018 Feb; 126(2):312-317. PubMed ID: 29208513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Achieving Exceptional Cochlea Delineation in Radiotherapy Scans: The Impact of Optimal Window Width and Level Settings.
    Shanbhag NM; Sulaiman Bin Sumaida A; Saleh M
    Cureus; 2023 Apr; 15(4):e37741. PubMed ID: 37091485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Update of the EPTN atlas for CT- and MR-based contouring in Neuro-Oncology.
    Eekers DBP; Di Perri D; Roelofs E; Postma A; Dijkstra J; Ajithkumar T; Alapetite C; Blomstrand M; Burnet NG; Calugaru V; Compter I; Coremans IEM; Harrabi S; Iannalfi A; Klaver YLB; Lambrecht M; Romero AM; Paulsen F; Timmermann B; Vitek P; van der Weide HL; Whitfield GA; Nyström PW; Zindler J; de Ruysscher D; Langendijk J; Weber DC; Troost EGC
    Radiother Oncol; 2021 Jul; 160():259-265. PubMed ID: 34015385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and evaluation of an automated EPTN-consensus based organ at risk atlas in the brain on MRI.
    Crouzen JA; Petoukhova AL; Wiggenraad RGJ; Hutschemaekers S; Gadellaa-van Hooijdonk CGM; van der Voort van Zyp NCMG; Mast ME; Zindler JD
    Radiother Oncol; 2022 Aug; 173():262-268. PubMed ID: 35714807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of automatic atlas-based lymph node segmentation for head-and-neck cancer.
    Stapleford LJ; Lawson JD; Perkins C; Edelman S; Davis L; McDonald MW; Waller A; Schreibmann E; Fox T
    Int J Radiat Oncol Biol Phys; 2010 Jul; 77(3):959-66. PubMed ID: 20231069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of a contouring atlas on radiographer inter-observer variation in male pelvis radiotherapy.
    Clough A; Chuter R; Hales RB; Parker J; McMahon J; Whiteside L; McHugh L; Davies L; Sanders J; Benson R; Nelder C; McDaid L; Choudhury A; Eccles CL
    J Med Imaging Radiat Sci; 2024 Jun; 55(2):281-288. PubMed ID: 38609834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-institutional Randomized Trial Testing the Utility of an Interactive Three-dimensional Contouring Atlas Among Radiation Oncology Residents.
    Gillespie EF; Panjwani N; Golden DW; Gunther J; Chapman TR; Brower JV; Kosztyla R; Larson G; Neppala P; Moiseenko V; Bykowski J; Sanghvi P; Murphy JD
    Int J Radiat Oncol Biol Phys; 2017 Jul; 98(3):547-554. PubMed ID: 28262474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retroperitoneal Sarcoma Target Volume and Organ at Risk Contour Delineation Agreement Among NRG Sarcoma Radiation Oncologists.
    Baldini EH; Abrams RA; Bosch W; Roberge D; Haas RLM; Catton CN; Indelicato DJ; Olsen JR; Deville C; Chen YL; Finkelstein SE; DeLaney TF; Wang D
    Int J Radiat Oncol Biol Phys; 2015 Aug; 92(5):1053-1059. PubMed ID: 26194680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of a Magnetic Resonance Imaging-based Auto-contouring Software Tool for Gross Tumour Delineation in Head and Neck Cancer Radiotherapy Planning.
    Doshi T; Wilson C; Paterson C; Lamb C; James A; MacKenzie K; Soraghan J; Petropoulakis L; Di Caterina G; Grose D
    Clin Oncol (R Coll Radiol); 2017 Jan; 29(1):60-67. PubMed ID: 27780693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.